首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文以云南被子植物蔷薇分支为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨了物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,对生物多样性的重点保护区域进行识别。结果显示:云南被子植物蔷薇分支的物种密度与系统发育多样性、特有种密度、受威胁物种密度均呈显著正相关,云南南部和西北部是物种丰富度与系统发育多样性最为丰富的区域;就云南整体而言,蔷薇分支的标准化系统发育多样性较低;云南南部、东南部、西北部是蔷薇分支的重点保护区域。  相似文献   

2.
周韩洁  杨入瑄  李嵘 《广西植物》2022,42(10):1694-1702
全球气候变化与人为活动等因素导致的生物多样性丧失,引起了全球各界对生物多样性保护的高度关注。传统生物多样性保护主要对物种、特有种、受威胁物种的种类组成及其分布模式开展研究,忽视了进化历史在生物多样性保护中的作用。云南是全球生物多样性热点地区的交汇区,生物多样性的保护历来受到广泛关注,为了更好地探讨云南生物多样性的保护措施,该研究以云南被子植物菊类分支物种为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,识别生物多样性的重点保护区域。结果表明:云南被子植物菊类分支的物种、特有种及受威胁物种的物种密度与系统发育多样性均显著正相关;通过零模型分析发现,由南向北标准化系统发育多样性逐渐降低;云南南部、东南部、西北部是云南被子植物菊类分支的重点保护区域,加强这些区域的保护,将最大化地保护生物多样性的进化历史和进化潜能。由此可见,融合进化历史信息的植物多样性格局分析不仅有助于更加深入地理解植物多样性的形成与演变,也为生物多样性保护策略的制定提供更多的思路。  相似文献   

3.
Aim Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location Global; equal‐area grid cells of approximately 10,000 km2. Methods We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index and the total taxonomic distinctness (TTD) index, because we found that the variance of the other two indices we examined (average taxonomic distinctness and mean root distance) strongly depended on species richness. We then identified regions with unusually high or low phylogenetic diversity given the underlying level of species richness by using the residuals from the global relationship of species richness and phylogenetic diversity. Results Phylogenetic diversity as measured by either Faith’s PD or TTD was strongly correlated with species richness globally, while the other two indices showed very different patterns. When either Faith’s PD or TTD was tested against species richness, residuals were strongly spatially structured. Areas with unusually low phylogenetic diversity for their associated species richness were mostly on islands, indicating large radiations of few lineages that have successfully colonized these archipelagos. Areas with unusually high phylogenetic diversity were located around biogeographic contact zones in Central America and southern China, and seem to have experienced high immigration or in situ diversification rates, combined with local persistence of old lineages. Main conclusions We show spatial structure in the residuals of the relationship between species richness and phylogenetic diversity, which together with the positive relationship itself indicates strong signatures of evolutionary history on contemporary global patterns of amphibian species richness. Areas with unusually low and high phylogenetic diversity for their associated richness demonstrate the importance of biogeographic barriers to dispersal, colonization and diversification processes.  相似文献   

4.
The factors responsible for maintaining diverse groundcover plant communities of high conservation value in frequently burned wet pine savannas are poorly understood. While most management involves manipulating extrinsic factors important in maintaining species diversity (e.g., fire regimes), most ecological theory (e.g., niche theory and neutral theory) examines how traits exhibited by the species promote species coexistence. Furthermore, although many ecologists focus on processes that maintain local species diversity, conservation biologists have argued that other indices (e.g., phylogenetic diversity) are better for evaluating assemblages in terms of their conservation value. I used a null model that employed beta‐diversity calculations based on Raup–Crick distances to test for deterministic herbaceous species losses associated with a 65‐year chronosequence of woody species encroachment within each of three localities. I quantified conservation value of assemblages by measuring taxonomic distinctness, endemism, and floristic quality of plots with and without woody encroachment. Reductions in herb species richness per plot attributable to woody encroachment were largely stochastic, as indicated by a lack of change in the mean or variance in beta‐diversity caused by woody encroachment in the savannas studied here. Taxonomic distinctness, endemism, and floristic quality (when summed across all species) were all greater in areas that had not experienced woody encroachment. However, when corrected for local species richness, only average endemism and floristic quality of assemblages inclusive of herbs and woody plants were greater in areas that had not experienced woody encroachment, due to the more restricted ranges and habitat requirements of herbs. Results suggest that frequent fires maintain diverse assemblages of fire‐dependent herb species endemic to the region. The stochastic loss of plant species, irrespective of their taxonomic distinctness, to woody encroachment suggests that the relevance of niche partitioning or phylogenetic diversity to the management of biodiversity in wet pine savannas is minimal.  相似文献   

5.
We investigated the effects of contemporary and historical factors on the spatial variation of European dragonfly diversity. Specifically, we tested to what extent patterns of endemism and phylogenetic diversity of European dragonfly assemblages are structured by 1) phylogenetic conservatism of thermal adaptations and 2) differences in the ability of post‐glacial recolonization by species adapted to running waters (lotic) and still waters (lentic). We investigated patterns of dragonfly diversity using digital distribution maps and a phylogeny of 122 European dragonfly species, which we constructed by combining taxonomic and molecular data. We calculated total taxonomic distinctiveness and mean pairwise distances across 4192 50 × 50 km equal‐area grid cells as measures of phylogenetic diversity. We compared species richness with corrected weighted endemism and standardized effect sizes of mean pairwise distances or residuals of total taxonomic distinctiveness to identify areas with higher or lower phylogenetic diversity than expected by chance. Broken‐line regression was used to detect breakpoints in diversity–latitude relationships. Dragonfly species richness peaked in central Europe, whereas endemism and phylogenetic diversity decreased from warm areas in the south‐west to cold areas in the north‐east and with an increasing proportion of lentic species. Except for species richness, all measures of diversity were consistently higher in formerly unglaciated areas south of the 0°C isotherm during the Last Glacial Maximum than in formerly glaciated areas. These results indicate that the distributions of dragonfly species in Europe were shaped by both phylogenetic conservatism of thermal adaptations and differences between lentic and lotic species in the ability of post‐glacial recolonization/dispersal in concert with the climatic history of the continent. The complex diversity patterns of European dragonflies provide an example of how integrating climatic and evolutionary history with contemporary ecological data can improve our understanding of the processes driving the geographical variation of biological diversity.  相似文献   

6.
Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology. The Qinghai-Tibet Plateau serves as a natural laboratory for studying these issues. However, most previous studies have focused on the entire Qinghai-Tibet Plateau, leaving independent physical geographic subunits in the region less well understood. We studied the current plant diversity of the Kunlun Mountains, an independent physical geographic subunit located in northwestern China on the northern edge of the Qinghai-Tibet Plateau. We integrated measures of species distribution, geological history, and phylogeography, and analyzed the taxonomic richness, phylogenetic diversity, and community phylogenetic structure of the current plant diversity in the area. The distribution patterns of 1911 seed plants showed that species were distributed mainly in the eastern regions of the Kunlun Mountains. The taxonomic richness, phylogenetic diversity, and genera richness showed that the eastern regions of the Kunlun Mountains should be the priority area of biodiversity conservation, particularly the southeastern regions. The proportion of Chinese endemic species inhabiting the Kunlun Mountains and their floristic similarity may indicate that the current patterns of species diversity were favored via species colonization. The Hengduan Mountains, a biodiversity hotspot, is likely the largest source of species colonization of the Kunlun Mountains after the Quaternary. The net relatedness index indicated that 20 of the 28 communities examined were phylogenetically dispersed, while the remaining communities were phylogenetically clustered. The nearest taxon index indicated that 27 of the 28 communities were phylogenetically clustered. These results suggest that species colonization and habitat filtering may have contributed to the current plant diversity of the Kunlun Mountains via ecological and evolutionary processes, and habitat filtering may play an important role in this ecological process.  相似文献   

7.

Aim

We used an eco-phylogenetic approach to investigate the diversity and assembly patterns of tropical dry forests (TDFs) in Central India. We aimed at informing conservation and restoration practices in these anthropogenically disturbed forests by identifying potential habitats of conservation significance and elements of regional biodiversity most vulnerable to human impact and climate change.

Location

Tropical dry forests of Madhya Pradesh, Central India.

Methods

We analysed the species richness, stem density, basal area and phylogenetic structure (standardized effect size of MNTD, MPD, PD and community evolutionary distinctiveness cED) of 117 tree species assemblages distributed across a ~230 to ~940 m elevational gradient. We examined how these community measures and taxonomic (Sørensen) and phylogenetic (UniFrac) beta diversity varied with elevation, precipitation, temperature and climatic stress.

Results

Species richness, phylogenetic diversity, stem density and basal area were positively correlated with elevation, with high-elevation plots exhibiting cooler temperatures, higher precipitation and lower stress. High-elevation assemblages also trended towards greater phylogenetic dispersion, which diminished at lower elevations and in drier, more stressful plots. Phylogenetic turnover was observed across the elevation gradient, and species evolutionary distinctiveness increased at lower elevations and under harsher abiotic conditions.

Main Conclusions

Harsher abiotic conditions at low elevations may act as a selective filter on plant lineages, leading to phylogenetically clustered low-diversity assemblages. These assemblages contained more evolutionarily distinct species that may contribute disproportionately to biodiversity. Conversely, milder abiotic conditions at high elevations may serve as refuges for drought-sensitive species, resulting in more diverse assemblages. Conservation practices that prioritize both high- and low-elevation habitats could promote the persistence of evolutionarily distinct species and areas of high biodiversity within the Central Indian landscape. Establishing connectivity between these habitats may provide a range of climatic conditions for species to retreat to or persist within as climates change.  相似文献   

8.
Aim Using a global data base of the distribution of extant bird species, we examine the evidence for spatial variation in the evolutionary origins of contemporary avian diversity. In particular, we assess the possible role of the timing of mountain uplift in promoting diversification in different regions. Location Global. Methods We mapped the distribution of avian richness at four taxonomic levels on an equal‐area 1° grid. We examined the relationships between richness at successive taxonomic levels (e.g. species richness vs. genus richness). We mapped the residuals from linear regressions of these relationships to identify areas that are exceptional in the number of lower taxa relative to the number of higher taxa. We use generalized least squares models to test the influence of elevation range and temperature on lower‐taxon richness relative to higher‐taxon richness. Results Peaks of species richness in the Neotropics were congruent with patterns of generic richness, whilst peaks in Australia and the Himalayas were congruent with patterns of both genus and family richness. Hotspots in the Afrotropics did not reflect higher‐taxon patterns. Regional differences in the relationship between richness at successive taxonomic levels revealed variation in patterns of taxon co‐occurrence. Species and genus co‐occurrence was positively associated with elevational range across much of the world. Taxon occurrence in the Neotropics was associated with a positive interaction between elevational range and temperature. Conclusions These results demonstrate that contemporary patterns of richness show different associations with higher‐taxon richness in different regions, which implies that the timing of historical effects on these contemporary patterns varies across regions. We suggest that this is due to dispersal limitation and phylogenetic constraints on physiological tolerance limits promoting diversification. We speculate that diversification rates respond to long‐term changes in the Earth's topography, and that the role of tropical mountain ranges is implicated as a correlate of contemporary diversity, and a source of diversification across avian evolutionary history.  相似文献   

9.
Understanding the relationships between species,communities,and biodiversity are important challenges in conservation ecology.Current biodiversity conservation activities usually focus on species that are rare,endemic,distinctive,or at risk of extinction.However,empirical studies of whether such species contribute more to aspects of biodiversity than common species are still relatively rare.The aim of the present study was to assess the contribution of individual amphibian species to different facets of biodiversity,and to test whether species of conservation interest contribute more to taxonomic,functional,and phylogenetic diversity than do species without special conservation status.To answer these questions,19 000 simulated random communities with a gradient of species richness were created by shuffling the regional pool of species inhabiting Emei Mountain.Differences of diversity values were then computed before and after removing individual species in these random communities.Our results indicated that although individual species contributed similarly to taxonomic diversity,their contribution to functional and phylogenetic diversity was more idiosyncratic.This was primarily driven by the diverse functional attributes of species and the differences in phylogenetic relationships among species.Additionally,species of conservation interest did not show a significantly higher contribution to any facet of biodiversity.Our results support the claims that the usefulness of metrics based only on species richness is limited.Instead,assemblages that include species with functional and phylogenetic diversity should be protected to maintain biodiversity.  相似文献   

10.
The Mediterranean Sea (0.82% of the global oceanic surface) holds 4%-18% of all known marine species (~17,000), with a high proportion of endemism [1, 2]. This exceptional biodiversity is under severe threats [1] but benefits from a system of 100 marine protected areas (MPAs). Surprisingly, the spatial congruence of fish biodiversity hot spots with this MPA system and the areas of high fishing pressure has not been assessed. Moreover, evolutionary and functional breadth of species assemblages [3] has been largely overlooked in marine systems. Here we adopted a multifaceted approach to biodiversity by considering the species richness of total, endemic, and threatened coastal fish assemblages as well as their functional and phylogenetic diversity. We show that these fish biodiversity components are spatially mismatched. The MPA system covers a small surface of the Mediterranean (0.4%) and is spatially congruent with the hot spots of all taxonomic components of fish diversity. However, it misses hot spots of functional and phylogenetic diversity. In addition, hot spots of endemic species richness and phylogenetic diversity are spatially congruent with hot spots of fishery impact. Our results highlight that future conservation strategies and assessment efficiency of current reserve systems will need to be revisited after deconstructing the different components of biodiversity.  相似文献   

11.
The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well‐characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time‐calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.  相似文献   

12.
The species composition of regional plant assemblages can in large part be explained by a long history of biogeographical and evolutionary events. Traditional attempts of floristic studies typically focus on the analyses of taxonomic composition, often ignoring the rich context that evolutionary history can provide. In 2014, Swenson and Umaña introduced the term ‘phylofloristics’ to define a phylogenetically enabled analysis of the species composition of regional floras. Integrating phylogenetic information into traditional floristic analysis can provide a promising way to explore the ecological, biogeographic, and evolutionary processes that drive plant assemblies at multiple spatial scales. In this review, we summarize the current progress on the phylogenetic structure, spatial phylogenetic pattern, origin and diversification, phylogenetic regionalization of floristic assemblages, and application of phylogenetic information in biodiversity conservation. These summaries highlight the importance of incorporating phylogenetic information to improve our understanding of floristic assembly from an evolutionary perspective. The review ends with a brief outlook on future challenges for phylofloristic studies, including generating a highly resolved species-level phylogenetic tree, compiling detailed and refined information regarding the geographic distribution of all plant life, extracting trait information from publications and herbarium specimens, and developing technological and methodological approaches for big data analysis.  相似文献   

13.
There is an urgent need to reduce drastically the rate at which biodiversity is declining worldwide. Phylogenetic methods are increasingly being recognised as providing a useful framework for predicting future losses, and guiding efforts for pre-emptive conservation actions. In this study, we used a reconstructed phylogenetic tree of angiosperm species of the Eastern Arc Mountains – an important African biodiversity hotspot – and described the distribution of extinction risk across taxonomic ranks and phylogeny. We provide evidence for both taxonomic and phylogenetic selectivity in extinction risk. However, we found that selectivity varies with IUCN extinction risk category. Vulnerable species are more closely related than expected by chance, whereas endangered and critically endangered species are not significantly clustered on the phylogeny. We suggest that the general observation for taxonomic and phylogenetic selectivity (i.e. phylogenetic signal, the tendency of closely related species to share similar traits) in extinction risks is therefore largely driven by vulnerable species, and not necessarily the most highly threatened. We also used information on altitudinal distribution and climate to generate a predictive model of at-risk species richness, and found that greater threatened species richness is found at higher altitude, allowing for more informed conservation decision making. Our results indicate that evolutionary history can help predict plant susceptibility to extinction threats in the hyper-diverse but woefully-understudied Eastern Arc Mountains, and illustrate the contribution of phylogenetic approaches in conserving African floristic biodiversity where detailed ecological and evolutionary data are often lacking.  相似文献   

14.
Species-rich tropical forests once occurred along much of China’s southern border, from southeastern Xizang (Tibet) and southern Yunnan to southwestern Guangxi, southern Taiwan and Hainan, mainly south of 22°30’N latitude. These Chinese forests are similar to Southeast Asian lowland tropical forests in their profiles and physiognomic characteristics, floristic composition and species richness. Studies of these southern forests in China are reviewed. Complete vegetation studies on the physiognomy and floristic composition have been done in southern Yunnan, Hainan and southwestern Guangxi. Forest fragmentation, dispersal patterns of trees, and the maintenance, population dynamics, phylogenetic community structure, tree functionality and phylogenetic diversity and conservation of these tropical Chinese forests have also been studied. Major changes in land use in China have resulted in an increase in rubber and Eucalyptus plantations and a decrease in the extent of southern forests. The direct results have been fragmentation and loss of biodiversity. The underplanting of economic crops in native forests also threatens to destroy saplings and seedlings, causing the forest to lose its regenerative capacity. Limiting further expansion of monoculture tree plantations, restricting underplanting, and promoting multi-species agroforestry systems are needed in China to conserve the biodiversity of its forests.  相似文献   

15.

Aim

Floristic and faunal diversity fall within species assemblages that can be grouped into distinct biomes or ecoregions. Understanding the origins of such biogeographic assemblages helps illuminate the processes shaping present‐day diversity patterns and identifies regions with unique or distinct histories. While the fossil record is often sparse, dated phylogenies can provide a window into the evolutionary past of these regions. Here, we present a novel phylogenetic approach to investigate the evolutionary origins of present‐day biogeographic assemblages and highlight their conservation value.

Location

Southern Africa.

Methods

We evaluate the evolutionary turnover separating species clusters in space at different time slices to determine the phylogenetic depth at which the signal for their present‐day structure emerges. We suggest present‐day assemblages with distinct evolutionary histories might represent important units for conservation. We apply our method to the vegetation of southern Africa using a dated phylogeny of the woody flora of the region and explore how the evolutionary history of vegetation types compares to common conservation currencies, including species richness, endemism and threat.

Results

We show the differentiation of most present‐day vegetation types can be traced back to evolutionary splits in the Miocene. The woody flora of the Fynbos is the most evolutionarily distinct, and thus has deeper evolutionary roots, whereas the Savanna and Miombo Woodland show close phylogenetic affinities and likely represent a more recent separation. However, evolutionarily distinct phyloregions do not necessarily capture the most unique phylogenetic diversity, nor are they the most species‐rich or threatened.

Main conclusions

Our approach complements analyses of the fossil record and serves as a link to the history of diversification, migration and extinction of lineages within biogeographic assemblages that is separate from patterns of species richness and endemism. Our analysis reveals how phyloregions capture conservation value not represented by traditional biodiversity metrics.
  相似文献   

16.
Systematically quantifying diversity across landscapes is necessary to understand how clade history and ecological heterogeneity contribute to the origin, distribution, and maintenance of biodiversity. Here, we chart the spatial structure of diversity among all species in the sedge family (Cyperaceae) throughout the USA and Canada. We first identify areas of remarkable species richness, phylogenetic diversity, and functional trait diversity, and highlight regions of conservation priority. We then test predictions about the spatial structure of this diversity based on the historical biogeography of the family. Incorporating a phylogeny, over 400 000 herbarium records, and a database of functional traits mined from online floras, we find that species richness and functional trait diversity peak in the Northeastern USA, while phylogenetic diversity peaks along the Gulf of Mexico. Floristic turnover among assemblages increases significantly with distance, but phylogenetic turnover is twice as rapid along latitudinal gradients as along longitudinal gradients. These patterns reflect the expected distribution of Cyperaceae, which originated in the tropics but radiated in temperate regions. We identify assemblages with an abundance of rare, range‐restricted lineages, and assemblages composed of species generally lacking from diverse regions. We argue that both of these metrics are useful for developing targeted conservation strategies. We use the data generated here to establish future research priorities, including the testing of a series of hypotheses regarding the distribution of chromosome numbers, photosynthetic pathways, and resource partitioning in sedges.  相似文献   

17.
Relationships among taxonomic, functional, and phylogenetic dimensions of biodiversity provide insight about the relative contributions of ecological and evolutionary processes in structuring local assemblages. We used data for rodent species distributions from an extensive tropical elevational gradient to 1) describe elevational gradients for each of three dimensions of biodiversity, 2) evaluate the sufficiency of species richness as a surrogate for other dimensions, and 3) quantify the relative support for mechanisms that increase or decrease phylogenetic or functional dispersion. Taxonomic biodiversity was quantified by species richness, as well as by richness, evenness, diversity, dominance, and rarity at generic and familial levels. Morphological and categorical traits were used to estimate functional biodiversity, and an ultrametric mammalian supertree was used as the basis for estimating phylogenetic biodiversity. Elevational gradients of each dimension of biodiversity were strong, with significant linear and non‐linear components based on orthogonal polynomial regression. Empirical linear and non‐linear regression components were consistently different than those expected based on species richness for generic, familial, and phylogenetic biodiversity, but not for functional biodiversity. Nevertheless, the congruence of dimensions of biodiversity based on correlation analyses indicated that any one dimension is a useful surrogate for the other dimensions for rodents at Manu. Given variation in species richness, assemblages from lowland rainforests comprised more biodiversity than expected, whereas assemblages from cloud and elfin forests represented less biodiversity than expected. Warm temperatures, vertical complexity of the vegetation, and high productivity likely facilitate niche differentiation in rainforests, whereas cricetid rodents are competitively superior to other clades in the less structurally complex, less productive, and colder, high elevation habitats.  相似文献   

18.
1. Many studies have shown traditional species diversity indices to perform poorly in discriminating anthropogenic influences on biodiversity. By contrast, in marine systems, taxonomic distinctness indices that take into account the taxonomic relatedness of species have been shown to discriminate anthropogenic effects. However, few studies have examined the performance of taxonomic distinctness indices in freshwater systems. 2. We studied the performance of four species diversity indices and four taxonomic distinctness indices for detecting anthropogenic effects on stream macroinvertebrate assemblages. Further, we examined the effects of catchment type and area, as well as two variables (pH and total phosphorus) potentially describing anthropogenic perturbation on biodiversity. 3. We found no indications of degraded biodiversity at the putatively disturbed sites. However, species density, rarefied species richness, Shannon's diversity and taxonomic diversity showed higher index values in streams draining mineral as opposed to peatland catchments. 4. Of the major environmental gradients analysed, biodiversity indices showed the strongest relationships with catchment area, lending further support to the importance of stream size for macroinvertebrate biodiversity. Some of the indices also showed weak linear and quadratic relationships to pH and total phosphorus, and residuals from the biodiversity index‐catchment area regressions (i.e. area effect standardized) were more weakly related to pH and total phosphorus than the original index values. 5. There are a number of reasons why the biodiversity indices did not respond to anthropogenic perturbation. First, some natural environmental gradients may mask the effects of perturbation on biodiversity. Secondly, perturbations of riverine ecosystems in our study area may not be strong enough to cause drastic changes in biodiversity. Thirdly, multiple anthropogenic stressors may either increase or decrease biodiversity, and thus the coarse division of sites into reference and altered streams may be an oversimplification. 6. Although neither species diversity nor taxonomic distinctness indices revealed anthropogenic degradation of macroinvertebrate assemblages in this study, the traditional species diversity and taxonomic distinctness indices were very weakly correlated. Therefore, we urge that biodiversity assessment and conservation planning should utilize a number of different indices, as they may provide complementary information about biotic assemblages.  相似文献   

19.
1. This paper is a synthesis of a special issue on groundwater biodiversity with a focus on obligate subterranean species, the stygobionts. The series of papers constitutes a great leap forward in assessing and understanding biodiversity patterns because of the use of large quantitative data sets obtained over a broad geographic scale. They also represent a conceptual shift, away from a purely taxonomic and phylogenetic focus to the analysis of whole groundwater assemblages.
2. The general patterns emerging for groundwater fauna are: very high levels of endemism, low local diversity relative to regional diversity, a limited number of lineages, occurrence of many relicts, and truncated food webs with very few predators.
3. β-Diversity is at least as important as α-diversity in determining total richness at different scales (aquifer, basin and region) and overall taxa richness increases across spatial scales.
4. Advances in understanding groundwater biodiversity patterns further include identification of several important factors related to geology and hydrology that determine the composition of European stygobiotic assemblages.
5. Important challenges for future research include improving sampling strategies, filling gaps in sampling coverage, intensifying research on theoretical and statistical models, and including functional and genetic diversity components in biodiversity assessments.
6. Strategies are proposed for protecting groundwater biodiversity and an argument is made to integrate biodiversity in groundwater management. Applying principles such as complementarity and flexibility for groundwater biodiversity conservation is a major step toward delineating a reserve network that maximise species representation at the European scale.  相似文献   

20.
报道了广西菊科斑鸠菊族的1个新记录属——凋缨菊属,描述了凋缨菊的分类学特征,给出了详细的图解,绘制了整个凋缨菊属的分布图。这一发现表明了我国桂西南热带地区与滇南以及中南半岛在植物区系上的紧密联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号