首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transposable elements (TEs) – selfish DNA sequences that can move within the genome – comprise a large proportion of the genomes of many organisms. Although low‐coverage whole‐genome sequencing can be used to survey TE composition, it is noneconomical for species with large quantities of DNA. Here, we utilize restriction‐site associated DNA sequencing (RADSeq) as an alternative method to survey TE composition. First, we demonstrate in silico that double digest restriction‐site associated DNA sequencing (ddRADseq) markers contain the same TE compositions as whole genome assemblies across arthropods. Next, we show empirically using eight Synalpheus snapping shrimp species with large genomes that TE compositions from ddRADseq and low‐coverage whole‐genome sequencing are comparable within and across species. Finally, we develop a new bioinformatic pipeline, TERAD, to extract TE compositions from RADseq data. Our study expands the utility of RADseq to study the repeatome, making comparative studies of genome structure for species with large genomes more tractable and affordable.  相似文献   

2.
3.
Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety “Big Star*” and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome‐wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.  相似文献   

4.
Prunus is an economically important genus with a wide range of physiological and biological variability. Using the peach genome as a reference, sequencing reads from four almond accessions and one sweet cherry cultivar were used for comparative analysis of these three Prunus species. Reference mapping enabled the identification of many biological relevant polymorphisms within the individuals. Examining the depth of the polymorphisms and the overall scaffold coverage, we identified many potentially interesting regions including hundreds of small scaffolds with no coverage from any individual. Non‐sense mutations account for about 70 000 of the 13 million identified single nucleotide polymorphisms (SNPs). Blast2GO analyses on these non‐sense SNPs revealed several interesting results. First, non‐sense SNPs were not evenly distributed across all gene ontology terms. Specifically, in comparison with peach, sweet cherry is found to have non‐sense SNPs in two 1‐aminocyclopropane‐1‐carboxylate synthase (ACS) genes and two 1‐aminocyclopropane‐1‐carboxylate oxidase (ACO) genes. These polymorphisms may be at the root of the nonclimacteric ripening of sweet cherry. A set of candidate genes associated with bitterness in almond were identified by comparing sweet and bitter almond sequences. To the best of our knowledge, this is the first report in plants of non‐sense SNP abundance in a genus being linked to specific GO terms.  相似文献   

5.
We have isolated 44 SSRs from an AC‐enriched genomic library from almond (Prunus amygdalus Batsch.). Twenty SSRs were screened for their polymorphism in 16 cultivars and for their transportability in seven different Prunus species (peach, nectarine, apricot, European plum, Japanese plum, sweet cherry, sour cherry) and in apple. The expected heterozygosity ranged from 0.62 to 0.89. About 30% of primers gave successful amplification in seven different Prunus species; in two cases amplifications were obtained also in apple.  相似文献   

6.
Transposable elements (TEs) are genomic parasites capable of inserting virtually anywhere in the host genome, with manifold consequences for gene expression, DNA methylation and genomic stability. Notably, they can contribute to phenotypic variation and hence be associated with, for example, local adaptation and speciation. However, some organisms such as birds have been widely noted for the low densities of TEs in their genomes and this has been attributed to a potential dearth in transposition during their evolution. Here, we show that avian evolution witnessed diverse and abundant transposition on very recent timescales. First, we made an in‐depth repeat annotation of the collared flycatcher genome, including identification of 23 new, retrovirus‐like LTR retrotransposon families. Then, using whole‐genome resequencing data from 200 Ficedula flycatchers, we detected 11,888 polymorphic TE insertions (TE presence/absence variations, TEVs) that segregated within and among species. The density of TEVs was one every 1.5–2.5 Mb per individual, with heterozygosities of 0.12–0.16. The majority of TEVs belonged to some 10 different LTR families, most of which are specific to the flycatcher lineage. TEVs were validated by tracing the segregation of hundreds of TEVs across a three‐generation pedigree of collared flycatchers and also by their utility as markers recapitulating the phylogenetic relationships among flycatcher species. Our results suggest frequent germline invasions of songbird genomes by novel retroviruses as a rich source of structural variation, which may have had underappreciated phenotypic consequences for the diversification of this species‐rich group of birds.  相似文献   

7.
Transposable elements (TEs) are ubiquitous sequences in genomes of virtually all species. While TEs have been investigated for several decades, only recently we have the opportunity to study their genome‐wide population dynamics. Most of the studies so far have been restricted either to the analysis of the insertions annotated in the reference genome or to the analysis of a limited number of populations. Taking advantage of the European Drosophila population genomics consortium (DrosEU) sequencing data set, we have identified and measured the dynamics of TEs in a large sample of European Drosophila melanogaster natural populations. We showed that the mobilome landscape is population‐specific and highly diverse depending on the TE family. In contrast with previous studies based on SNP variants, no geographical structure was observed for TE abundance or TE divergence in European populations. We further identified de novo individual insertions using two available programs and, as expected, most of the insertions were present at low frequencies. Nevertheless, we identified a subset of TEs present at high frequencies and located in genomic regions with a high recombination rate. These TEs are candidates for being the target of positive selection, although neutral processes should be discarded before reaching any conclusion on the type of selection acting on them. Finally, parallel patterns of association between the frequency of TE insertions and several geographical and temporal variables were found between European and North American populations, suggesting that TEs can be potentially implicated in the adaptation of populations across continents.  相似文献   

8.
9.
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome‐wide cytosine methylation in the sugar beet genome was studied in leaves and leaf‐derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome‐wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves.  相似文献   

10.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   

11.
Peach (Prunus persica L. Batsch) is an economically important fruit crop worldwide. Although a high-quality peach genome has previously been published, Sanger sequencing was used for its assembly, which generated short contigs. Here, we report a chromosome-level genome assembly and sequence analysis of Chinese Cling, an important founder cultivar for peach breeding programs worldwide. The assembled genome contained 247.33 Mb with a contig N50 of 4.13 Mb and a scaffold N50 of 29.68 Mb, representing 99.8% of the estimated genome. Comparisons between this genome and the recently published one (Lovell peach) uncovered 685 407 single nucleotide polymorphisms, 162 655 insertions and deletions, and 16 248 structural variants. Gene family analysis highlighted the contraction of the gene families involved in flavone, flavonol, flavonoid, and monoterpenoid biosynthesis. Subsequently, the volatile compounds of 256 peach varieties were quantitated in mature fruits in 2015 and 2016 to perform a genome-wide association analysis. A comparison with the identified domestication genomic regions allowed us to identify 25 quantitative trait loci, associated with seven volatile compounds, in the domestication region, which is consistent with the differences in volatile compounds between wild and cultivated peaches. Finally, a gene encoding terpene synthase, located within a previously reported quantitative trait loci region, was identified to be associated with linalool synthesis. Such findings highlight the importance of this new assembly for the analysis of evolutionary mechanisms and gene identification in peach species. Furthermore, this high-quality peach genome provides valuable information for future fruit improvement.  相似文献   

12.
13.
14.
15.
Triticeae species (including wheat, barley and rye) have huge and complex genomes due to polyploidization and a high content of transposable elements (TEs). TEs are known to play a major role in the structure and evolutionary dynamics of Triticeae genomes. During the last 5 years, substantial stretches of contiguous genomic sequence from various species of Triticeae have been generated, making it necessary to update and standardize TE annotations and nomenclature. In this study we propose standard procedures for these tasks, based on structure, nucleic acid and protein sequence homologies. We report statistical analyses of TE composition and distribution in large blocks of genomic sequences from wheat and barley. Altogether, 3.8 Mb of wheat sequence available in the databases was analyzed or re-analyzed, and compared with 1.3 Mb of re-annotated genomic sequences from barley. The wheat sequences were relatively gene-rich (one gene per 23.9 kb), although wheat gene-derived sequences represented only 7.8% (159 elements) of the total, while the remainder mainly comprised coding sequences found in TEs (54.7%, 751 elements). Class I elements [mainly long terminal repeat (LTR) retrotransposons] accounted for the major proportion of TEs, in terms of sequence length as well as element number (83.6% and 498, respectively). In addition, we show that the gene-rich sequences of wheat genome A seem to have a higher TE content than those of genomes B and D, or of barley gene-rich sequences. Moreover, among the various TE groups, MITEs were most often associated with genes: 43.1% of MITEs fell into this category. Finally, the TRIM and copia elements were shown to be the most active TEs in the wheat genome. The implications of these results for the evolution of diploid and polyploid wheat species are discussed. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
The nautilus, commonly known as a “living fossil,” is endangered and may be at risk of extinction. The lack of genomic information hinders a thorough understanding of its biology and evolution, which can shed light on the conservation of this endangered species. Here, we report the first high-quality chromosome-level genome assembly of Nautilus pompilius. The assembled genome size comprised 785.15 Mb. Comparative genomic analyses indicated that transposable elements (TEs) and large-scale genome reorganizations may have driven lineage-specific evolution in the cephalopods. Remarkably, evolving conserved genes and recent TE insertion activities were identified in N. pompilius, and we speculate that these findings reflect the strong adaptability and long-term survival of the nautilus. We also identified gene families that are potentially responsible for specific adaptation and evolution events. Our study provides unprecedented insights into the specialized biology and evolution of N. pompilius, and the results serve as an important resource for future conservation genomics of the nautilus and closely related species.  相似文献   

17.
18.
Genetic diversity of contemporary domesticated species is shaped by both natural and human‐driven processes. However, until now, little is known about how domestication has imprinted the variation of fruit tree species. In this study, we reconstruct the recent evolutionary history of the domesticated almond tree, Prunus dulcis, around the Mediterranean basin, using a combination of nuclear and chloroplast microsatellites [i.e. simple sequence repeat (SSRs)] to investigate patterns of genetic diversity. Whereas conservative chloroplast SSRs show a widespread haplotype and rare locally distributed variants, nuclear SSRs show a pattern of isolation by distance with clines of diversity from the East to the West of the Mediterranean basin, while Bayesian genetic clustering reveals a substantial longitudinal genetic structure. Both kinds of markers thus support a single domestication event, in the eastern side of the Mediterranean basin. In addition, model‐based estimation of the timing of genetic divergence among those clusters is estimated sometime during the Holocene, a result that is compatible with human‐mediated dispersal of almond tree out of its centre of origin. Still, the detection of region‐specific alleles suggests that gene flow from relictual wild preglacial populations (in North Africa) or from wild counterparts (in the Near East) could account for a fraction of the diversity observed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号