首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C3 plants including many agronomically important crops exhibit a lower photosynthetic efficiency due to inhibition of photosynthesis by O2 and the associated photorespiration. C4 plants had evolved the C4 pathway to overcome low CO2 and photorespiration. This review first focuses on the generation of a system for high level expression of the C4-specific gene for pyruvate, orthophosphate dikinase (Pdk), one of the key enzyme in C4 photosynthesis. Based on the results with transgenic rice plants, we have demonstrated that the regulatory system controlling thePdk expression in maize is not unique to C4 plants but rice (C3 plant) posses a similar system. Second, we discussed the possibility of the high level expression of maize C4-specific genes in transgenic rice plants. Introduction of the maize intact phosphoenolpyruvate carboxylase gene (Ppc) caused 30–100 fold higher PEPC activities than non-transgenic rice. These results demonstrated that intact C4-type genes are available for high level expression of C4 enzymes in rice plants. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

2.
3.
4.
Questions: Can prescribed fire restore C4 perennial grasses in grassland ecosystems that have become dominated by fire‐resistant C3 shrubs (Prosopis glandulosa) and C3 grasses? Do fires in different seasons alter the direction of change in grass composition? Location: Texas, USA. Methods: We quantified short‐ and long‐term (12 yr post‐fire) herbaceous functional group cover and diversity responses to replicated seasonal fire treatments: (1) repeated‐winter fires (three in 5 yr), (2) repeated‐summer fires (two in 3 yr), and (3) alternate‐season fires (two winter and one summer in 4 yr), compared with a no‐fire control. Results: Summer fires were more intense than winter fires, but all fire treatments temporarily decreased Prosopis and C3 annual grass cover. The alternate‐season fire treatment caused a long‐term increase in C4 mid‐grass cover and functional group diversity. The repeated‐summer fire treatment increased C4 short‐grass cover but also caused a long‐term increase in bare ground. The repeated winter fire treatment had no long‐term effects on perennial grass cover. Mesquite post‐fire regrowth had increasingly negative impacts on herbaceous cover in all fire treatments. Conclusions: Summer fire was necessary to shift herbaceous composition toward C4 mid‐grasses. However, the repeated‐summer fire treatment may have been too extreme and caused post‐fire herbaceous composition to “over‐shift” toward less productive C4 short‐grasses rather than C4 mid‐grasses. This study provides some of the first long‐term data showing a possible benefit of mixing seasonal fires (i.e., the alternate‐season fire treatment) in a prescribed burning management plan to restore C4 mid‐grass cover and enhance overall herbaceous diversity.  相似文献   

5.
6.
Changes in C4 grass distribution and abundance are frequently observed in Quaternary, Holocene and future environmental‐change scenarios. However, the factors driving these dynamics are not fully understood, and conflicting theories have been reported. In this paper, we present a very large dataset of modern altitudinal distribution profiles of C3 and C4 grasses covering the entire Neotropical Andes, which was compared with actual climate data. The results of multivariate analysis demonstrate that, in the Neotropical Andes, mean annual temperature is the main factor governing the modern altitudinal distribution of C3 and C4 grass species. The C3 and C4 grass distributions were compared with simulations based on the Lund‐Potsdam‐Jena dynamic global vegetation model (LPJ‐DGVM), which allowed the present grass distribution to be estimated. Finally, the DGVM was employed to simulate past and future scenarios, using the IPCC's climate projections for 2100 and PMIP2 models for the Holocene Optimum (HO, 6000 years bp ) and the Last Glacial Maximum (LGM, 21 000 years bp ). The results were found to be significantly different from those obtained using a simple photosynthetic model. According to LPJ forced with the PMIP2 models for the LGM, during the LGM, the C4 grasses would not have reached higher altitudes than found in the present day.  相似文献   

7.
To better understand the coordination between dark and light reactions during the transition from C3 to C4 photosynthesis, we optimized a method for separating thylakoids from mesophyll (MC) and bundle sheath cells (BSCs) across different plant species. We grew six Paniceae grasses including representatives from the C3, C3–C4 and C4 photosynthetic types and all three C4 biochemical subtypes [nicotinamide adenine dinucleotide phosphate‐dependent malic enzyme (NADP‐ME), nicotinamide adenine dinucleotide‐dependent malic enzyme (NAD‐ME) and phosphoenolpyruvate carboxykinase (PEPCK)] in addition to Zea mays under control conditions (1000 μmol quanta m?2 s?1 and 400 ppm of CO2). Proteomics analysis of thylakoids under native conditions, using blue native polyacrylamide gel electrophoresis followed by liquid chromatography‐mass spectrometry (LC‐MS), demonstrated the presence of subunits of all light‐reaction‐related complexes in all species and cell types. C4 NADP‐ME species showed a higher photosystems I/II ratio and a clear accumulation of the NADH dehydrogenase‐like complexes in BSCs, while Cytb6f was more abundant in BSCs of C4 NAD‐ME species. The C4 PEPCK species showed no clear differences between cell types. Our study presents, for the first time, a good separation between BSC and MC for a C3–C4 intermediate grass which did not show noticeable differences in the distribution of the thylakoid complexes. For the NADP‐ME species Panicum antidotale, growth at glacial CO2 (180 ppm of CO2) had no effect on the distribution of the light‐reaction complexes, while growth at low light (200 μmol quanta m?2 s?1) promoted the accumulation of light‐harvesting proteins in both cell types. These results add to our understanding of thylakoid distribution across photosynthetic types and subtypes, and introduce thylakoid distribution between the MC and BSC of a C3–C4 intermediate species.  相似文献   

8.
Rubisco activase (Rca) facilitates the release of sugar‐phosphate inhibitors at Rubisco catalytic sites during CO2 fixation. Most plant species express two Rca isoforms, the larger Rca‐α and the shorter Rca‐β, either by alternative splicing from a single gene or expression from separate genes. The mechanism of Rubisco activation by Rca isoforms has been intensively studied in C3 plants. However, the functional role of Rca in C4 plants where Rubisco and Rca are located in a much higher [CO2] compartment is less clear. In this study, we selected four C4 bioenergy grasses and the model C4 grass setaria (Setaria viridis) to investigate the role of Rca in C4 photosynthesis. All five C4 grass species contained two Rca genes, one encoding Rca‐α and the other Rca‐β, which were positioned closely together in the genomes. A variety of abiotic stress‐related motifs were identified in the Rca‐α promoter of each grass, and while the Rca‐β gene was constantly highly expressed at ambient temperature, Rca‐α isoforms were expressed only at high temperature but never surpassed 30% of Rca‐β content. The pattern of Rca‐α induction on transition to high temperature and reduction on return to ambient temperature was the same in all five C4 grasses. In sorghum (Sorghum bicolor), sugarcane (Saccharum officinarum), and setaria, the induction rate of Rca‐α was similar to the recovery rate of photosynthesis and Rubisco activation at high temperature. This association between Rca‐α isoform expression and maintenance of Rubisco activation at high temperature suggests that Rca‐α has a functional thermo‐protective role in carbon fixation in C4 grasses by sustaining Rubisco activation at high temperature.  相似文献   

9.
Atmospheric CO2 enrichment may impact arbuscular mycorrhizae (AM) development and function, which could have subsequent effects on host plant species interactions by differentially affecting plant nutrient acquisition. However, direct evidence illustrating this scenario is limited. We examined how elevated CO2 affects plant growth and whether mycorrhizae mediate interactions between C4 barnyard grass (Echinochloa crusgalli (L.) Beauv.) and C3 upland rice (Oryza sativa L.) in a low nutrient soil. The monocultures and combinations with or without mycorrhizal inoculation were grown at ambient (400 ± 20 μmol mol?1) and elevated CO2 (700 ± 20 μmol mol?1) levels. The 15N isotope tracer was introduced to quantify the mycorrhizally mediated N acquisition of plants. Elevated CO2 stimulated the growth of C3 upland rice but not that of C4 barnyard grass under monoculture. Elevated CO2 also increased mycorrhizal colonization of C4 barnyard grass but did not affect mycorrhizal colonization of C3 upland rice. Mycorrhizal inoculation increased the shoot biomass ratio of C4 barnyard grass to C3 upland rice under both CO2 concentrations but had a greater impact under the elevated than ambient CO2 level. Mycorrhizae decreased relative interaction index (RII) of C3 plants under both ambient and elevated CO2, but mycorrhizae increased RII of C4 plants only under elevated CO2. Elevated CO2 and mycorrhizal inoculation enhanced 15N and total N and P uptake of C4 barnyard grass in mixture but had no effects on N and P acquisition of C3 upland rice, thus altering the distribution of N and P between the species in mixture. These results implied that CO2 stimulation of mycorrhizae and their nutrient acquisition may impact competitive interaction of C4 barnyard grass and C3 upland rice under future CO2 scenarios.  相似文献   

10.
11.
An untested theory states that C4 grass seeds could germinate under lower water potentials (Ψ) than C3 grass seeds. We used hydrotime modelling to study seed water relations of C4 and C3 Canadian prairie grasses to address Ψ divergent sensitivities and germination strategies along a risk‐spreading continuum of responses to limited water. C4 grasses were Bouteloua gracilis, Calamovilfa longifolia and Schizachyrium scoparium; C3 grasses were Bromus carinatus, Elymus trachycaulus, Festuca hallii and Koeleria macrantha. Hydrotime parameters were obtained after incubation of non‐dormant seeds under different Ψ PEG 6000 solutions. A t‐test between C3 and C4 grasses did not find statistical differences in population mean base Ψ (Ψb(50)). We found idiosyncratic responses of C4 grasses along the risk‐spreading continuum. B. gracilis showed a risk‐taker strategy of a species able to quickly germinate in a dry soil due to its low Ψb(50) and hydrotime (θH). The high Ψb(50) of S. scoparium indicates it follows the risk‐averse strategy so it can only germinate in wet soils. C. longifolia showed an intermediate strategy: the lowest Ψb(50) yet the highest θH. K. macrantha, a C3 grass which thrives in dry habitats, had the highest Ψb(50), suggesting a risk‐averse strategy for a C3 species. Other C3 species showed intermediate germination patterns in response to Ψ relative to C4 species. Our results indicate that grasses display germination sensitivities to Ψ across the risk‐spreading continuum of responses. Thus seed water relations may be poor predictors to explain differential recruitment and distribution of C3 and C4 grasses in the Canadian prairies.  相似文献   

12.
13.
14.
Leaf‐chewing insects are commonly believed to be unable to crush the nutrient‐rich bundle sheath cells (BSC) of C4 grasses. This physical constraint on digestion is thought to reduce the nutritional quality of these grasses substantially. However, recent evidence suggests that BSC are digested by grasshoppers. To directly assess the ability of grasshoppers to digest C4 grass BSC, leaf particles of Bouteloua curtipendula (Poaceae) were examined from the digestive tracts of two grasshopper species: Camnula pellucida (Scudder) (primarily a grass feeder) and Melanoplus sanguinipes (Fabricius) (a forb and grass generalist) (Orthoptera: Acrididae). Transmission electron microscopy was used to make the first observations of BSC crushing by herbivorous insects. Camnula pellucida and M. sanguinipes crushed over 58% and 24%, respectively, of the BSC in ingested leaf tissues. In addition, chloroplast and cell membranes were commonly disrupted in uncrushed BSC, permitting soluble nutrients to be extracted, even when BSC walls remain intact. The greater efficiency with which C. pellucida crushes BSC is consistent with the idea that grass‐feeding species are better adapted for handling grass leaf tissues than are generalist species. By demonstrating the effectiveness with which the BSC of B. curtipendula can be crushed and extracted by both species of grasshoppers, this study suggests one reason why C4 grasses are not generally avoided by grasshoppers: at least some C4 grasses can be more easily digested than has been hypothesized.  相似文献   

15.
  • Miscanthus sinensis Anderss. is a good candidate for C4 bioenergy crop development for marginal lands. As one of the characteristics of marginal lands, salinization is a major limitation to agricultural production. The present work aimed to investigate the possible factors involved in the tolerance of M. sinensis C4 photosynthesis to salinity stress.
  • Seedlings of two accessions (salt‐tolerant ‘JM0119’ and salt‐sensitive ‘JM0099’) were subjected to 0 mm NaCl (control) or 250 mm NaCl (salt stress treatment) for 2 weeks. The chlorophyll content, parameters of photosynthesis and chlorophyll a fluorescence, activity of C4 enzymes and expression of C4 genes were measured.
  • The results showed that photosynthesis rate, transpiration rate, chlorophyll content, PSII operating efficiency, coefficient of photochemical quenching, activity of phosphoenolpyruvate carboxylase (PEPC) and pyruvate, orthophosphate dikinase (PPDK) and gene expression of PEPC and PPDK under salinity were higher after long‐term salinity exposure in ‘JM0119’ than in ‘JM0099’, while activity of NADP‐malate dehydrogenase (NADP‐MDH) and NADP‐malic enzyme (NADP‐ME), together with expression of NADP‐MDH and NADP‐ME, were much higher in ‘JM0099’ than in ‘JM0119’.
  • In conclusion, the increased photosynthetic capacity under long‐term salt stress in the salt‐tolerant relative to the salt‐sensitive M. sinensis accession was mainly associated with non‐stomatal factors, such as reduced chlorophyll loss, higher PSII operating efficiency, enhanced activity of PEPC and PPDK and relatively lower activity of NADP‐ME.
  相似文献   

16.
C4 photosynthesis is a complex trait that boosts productivity in warm environments. Paradoxically, it evolved independently in numerous plant lineages, despite requiring specialised leaf anatomy. The anatomical modifications underlying C4 evolution have previously been evaluated through interspecific comparisons, which capture numerous changes besides those needed for C4 functionality. Here, we quantify the anatomical changes accompanying the transition between non‐C4 and C4 phenotypes by sampling widely across the continuum of leaf anatomical traits in the grass Alloteropsis semialata. Within this species, the only trait that is shared among and specific to C4 individuals is an increase in vein density, driven specifically by minor vein development that yields multiple secondary effects facilitating C4 function. For species with the necessary anatomical preconditions, developmental proliferation of veins can therefore be sufficient to produce a functional C4 leaf anatomy, creating an evolutionary entry point to complex C4 syndromes that can become more specialised.  相似文献   

17.
Many field studies have examined how site fertility, soil differences and site history influence the diversity of a plant community. However, only a few studies have examined how the identity of the dominant species influences the diversity in grasslands. Plant species differ widely in phenology, growth form and resource uses; thus, communities dominated by different species are also likely to strongly differ in the environment that they create and in which the subdominant species exist. We examined the correlation between the four most dominant species and community diversity in 2100 plots, located in 21 abandoned agricultural fields in central Minnesota over a 23‐year period. The four most common species were two non‐native C3 cool season species, Poa pratensis and Agropyron repens, and two native C4 warm season species, Schizachyrium scoparium and Andropogon gerardii. We found that the differences in the dominants explained up to 27% of the community diversity. Thus, the identity of the dominant species can have a strong influence on community diversity and studies examining factors that influence plant community diversity need to incorporate the effect of the dominants. Secondly, we found that the non‐native C3 grass dominated communities had lower overall and lower native species richness relative to the native C4 grass dominated communities. Therefore, a shift in dominants from C4 to C3 may lead to a large community diversity decline. We found that Poa pratensis, the most abundant non‐native C3 grass increased in abundance over the 23 years; thus, the negative influence of non‐natives on the community diversity is not decreasing over time and active management is required to restore native grassland plant communities.  相似文献   

18.
At high temperatures and relatively low CO2 concentrations, plants can most efficiently fix carbon to form carbohydrates through C4 photosynthesis rather than through the ancestral and more widespread C3 pathway. Because most C4 plants are grasses, studies of the origin of C4 are intimately tied to studies of the origin of the grasses. We present here a phylogeny of the grass family, based on nuclear and chloroplast genes, and calibrated with six fossils. We find that the earliest origins of C4 likely occurred about 32 million years ago (Ma) in the Oligocene, coinciding with a reduction in global CO2 levels. After the initial appearance of C4 species, photosynthetic pathway changed at least 15 more times; we estimate nine total origins of C4 from C3 ancestors, at least two changes of C4 subtype, and five reversals to C3. We find a cluster of C4 to C3 reversals in the Early Miocene correlating with a drop in global temperatures, and a subsequent cluster of C4 origins in the Mid‐Miocene, correlating with the rise in temperature at the Mid‐Miocene climatic optimum. In the process of dating the origins of C4, we were also able to provide estimated times for other major events in grass evolution. We find that the common ancestor of the grasses (the crown node) originated in the upper Cretaceous. The common ancestor of maize and rice lived at 52 ± 8 Ma.  相似文献   

19.
Engineering C4 photosynthesis into rice has been considered a promising strategy to increase photosynthesis and yield. A question that remains to be answered is whether expressing a C4 metabolic cycle into a C3 leaf structure and without removing the C3 background metabolism improves photosynthetic efficiency. To explore this question, we developed a 3D reaction diffusion model of bundle‐sheath and connected mesophyll cells in a C3 rice leaf. Our results show that integrating a C4 metabolic pathway into rice leaves with a C3 metabolism and mesophyll structure may lead to an improved photosynthesis under current ambient CO2 concentration. We analysed a number of physiological factors that influence the CO2 uptake rate, which include the chloroplast surface area exposed to intercellular air space, bundle‐sheath cell wall thickness, bundle‐sheath chloroplast envelope permeability, Rubisco concentration and the energy partitioning between C3 and C4 cycles. Among these, partitioning of energy between C3 and C4 photosynthesis and the partitioning of Rubisco between mesophyll and bundle‐sheath cells are decisive factors controlling photosynthetic efficiency in an engineered C3–C4 leaf. The implications of the results for the sequence of C4 evolution are also discussed.  相似文献   

20.
The photosynthetic efficiency of the CO2‐concentrating mechanism in two forms of single‐cell C4 photosynthesis in the family Chenopodiaceae was characterized. The Bienertioid‐type single‐cell C4 uses peripheral and central cytoplasmic compartments (Bienertia sinuspersici), while the Borszczowioid single‐cell C4 uses distal and proximal compartments of the cell (Suaeda aralocaspica). C4 photosynthesis within a single‐cell raises questions about the efficiency of this type of CO2‐concentrating mechanism compared with the Kranz‐type. We used measurements of leaf CO2 isotope exchange (Δ13C) to compare the efficiency of the single‐cell and Kranz‐type forms of C4 photosynthesis under various temperature and light conditions. Comparisons were made between the single‐cell C4 and a sister Kranz form, S. eltonica[NAD malic enzyme (NAD ME) type], and with Flaveria bidentis[NADP malic enzyme (NADP‐ME) type with Kranz Atriplicoid anatomy]. There were similar levels of Δ13C discrimination and CO2 leakiness (?) in the single‐cell species compared with the Kranz‐type. Increasing leaf temperature (25 to 30 °C) and light intensity caused a decrease in Δ13C and ? across all C4 types. Notably, B. sinuspersici had higher Δ13C and ? than S. aralocaspica under lower light. These results demonstrate that rates of photosynthesis and efficiency of the CO2‐concentrating mechanisms in single‐cell C4 plants are similar to those in Kranz‐type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号