首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic relationships and lineage diversification of the family Salicaceae sensu lato (s.l.) remain poorly understood. In this study, we examined phylogenetic relationships between 42 species from six genera based on the complete plastomes. Phylogenetic analyses of 77 protein coding genes of the plastomes produced good resolution of the interrelationships among most sampled species and the recovered clades. Of the sampled genera from the family, Flacourtia was identified as the most basal and the successive clades comprised both Itoa and Poliothyrsis, Idesia, two genera of the Salicaceae sensu stricto (s.s.) (Populus and Salix). Five major subclades were recovered within the Populus clade. These subclades and their interrelationships are largely inconsistent with morphological classifications and molecular phylogeny based on nuclear internal transcribed spacer sequence variations. Two major subclades were identified for the Salix clade. Molecular dating suggested that species diversification of the major subclades in the Populus and Salix clades occurred mainly within the recent Pliocene. In addition, we found that the rpl32 gene was lost and the rps7 gene evolved into a pseudogene multiple times in the sampled genera of the Salicaceae s.l. Compared with previous studies, our results provide a well‐resolved phylogeny from the perspective of the plastomes.  相似文献   

2.
Tiger beetles are a remarkable group that captivates amateur entomologists, taxonomists and evolutionary biologists alike. This diverse clade of beetles comprises about 2300 currently described species found across the globe. Despite the charisma and scientific interest of this lineage, remarkably few studies have examined its phylogenetic relationships with large taxon sampling. Prior phylogenetic studies have focused on relationships within cicindeline tribes or genera, and none of the studies have included sufficient taxon sampling to conclusively examine broad species patterns across the entire subfamily. Studies that have attempted to reconstruct higher‐level relationships of Cicindelinae have yielded conflicting results. Here, we present the first taxonomically comprehensive molecular phylogeny of Cicindelinae to date, with the goal of creating a framework for future studies focusing on this important insect lineage. We utilized all available published molecular data, generating a final concatenated dataset including 328 cicindeline species, with molecular data sampled from six protein‐coding gene fragments and three ribosomal gene fragments. Our maximum‐likelihood phylogenetic inferences recover Cicindelinae as sister to the wrinkled bark beetles of the subfamily Rhysodinae. This new phylogenetic hypothesis for Cicindelinae contradicts our current understanding of tiger beetle phylogenetic relationships, with several tribes, subtribes and genera being inferred as paraphyletic. Most notably, the tribe Manticorini is recovered nested within Platychilini including the genera Amblycheila Say, Omus Eschscholtz, Picnochile Motschulsky and Platychile Macleay. The tribe Megacephalini is recovered as paraphyletic due to the placement of the monophyletic subtribe Oxycheilina as sister to Cicindelini, whereas the monophyletic Megacephalina is inferred as sister to Oxycheilina, Cicindelini and Collyridini. The tribe Collyridini is paraphyletic with the subtribes Collyridina and Tricondylina in one clade, and Ctenostomina in a second one. The tribe Cicindelini is recovered as monophyletic although several genera are inferred as para‐ or polyphyletic. Our results provide a novel phylogenetic framework to revise the classification of tiger beetles and to encourage the generation of focused molecular datasets that will permit investigation of the evolutionary history of this lineage through space and time.  相似文献   

3.
4.
Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. Neither Cyrtonaias nor Psorula were supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias), Lampsilini (two lineages: Cyrtonaias explicata/Sphenonaias microdon, and Pachynaias), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the genera Psoronaias, Psorula and Popenaias. The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae.  相似文献   

5.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

6.
Subsocial behaviour is known to occur in at least 19 insect orders and 17 families of Coleoptera. Within the leaf beetle family, Chrysomelidae, extended maternal care is reported in only 2 of 15 subfamilies: Cassidinae and Chrysomelinae. Although the emergence of subsociality in insects has received much attention, extensive analyses on the evolution of this behaviour based on phylogenetic approaches are missing. Subsociality is recorded in 33 species of tortoise beetles belonging to the tribes Mesomphaliini and Eugenysini. A molecular phylogenetic reconstruction of these tribes and the remaining five Neotropical tribes of cassidine tortoise beetles was used to investigate the evolution of maternal care and to elucidate the phylogenetic relationships among Neotropical cassidine tribes. A phylogeny was constructed using 90 species and three loci from both mitochondrial and nuclear genes (COI, CAD and 28S). Bayesian inference and maximum likelihood analyses based on a concatenated dataset recovered two independent origins, with no evidence of reversal to solitary behaviour. One origin comprises three Mesomphaliini genera tightly associated with Convolvulaceae, and the other consists of the genus Eugenysa Chevrolat (Eugenysini), a small clade embedded within a group feeding exclusively on Asteraceae. A previous hypothesis suggesting dual origins on different host plants was confirmed, whereas other hypotheses based on a phylogenetic reconstruction of Cassidinae could not be sustained. Our analysis also revealed that the tribe Mesomphaliini is a monophyletic taxon if Eugenysini is included, and for this reason, we re-establish synonymy of both tribes. We also provide nine new records of subsociality for tortoise beetles species.  相似文献   

7.
The family Rhinocryptidae comprises an assemblage of 12 genera and 55 species confined to the Neotropical region. Here we present the first morphology‐based phylogenetic study of the Rhinocryptidae, using 90 anatomical characters (62 osteological, 28 syringeal) scored for all genera of the family and representatives of all families of the infraorder Furnariides. Parsimony analysis of this dataset recovered 7428 equally most‐parsimonious trees. The strict consensus of those trees was completely resolved at the genus level, with the topology (Liosceles (Psilorhamphus ((Eleoscytalopus + Merulaxis) (Acropternis ((Teledromas + Rhinocrypta) ((Pteroptochos + Scelorchilus) (Eugralla (Myornis + Scytalopus)))))))). The monophyly of the Rhinocryptidae as presently understood was recovered with strong support [eight synapomorphies and Bremer support (BS) = 6). Strongly supported internal arrangements included the basal position of the Amazonian genus Liosceles relative to the rest of the family (four synapomorphies, BS = 4), a clade containing Acropternis through Scytalopus (six synapomorphies, BS = 4), and other less inclusive nodes. The main points of congruence between the present morphological phylogeny and previous molecular phylogenetic work on the family were clades supported by six or more synapomorphies and Bremer values of 6–7: Eleoscytalopus + Merulaxis (eight synapomorphies, BS = 6), Scelorchilus + Pteroptochos (seven synapomorphies, BS = 7), Rhinocrypta + Teledromas (seven synapomorphies, BS = 7), and Eugralla + Myornis + Scytalopus (six synapomorphies, BS = 6). A classification derived from the morphological phylogeny is proposed, with new suprageneric taxa being named and diagnosed. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 377–432.  相似文献   

8.
A parsimony‐based phylogenetic analysis of eighty‐three morphological characters of adults and immatures of seventy representatives of the tribes and subfamilies of Membracidae and two outgroup taxa was conducted to evaluate the status and relationships of these taxa. Centrotinae apparently gave rise to Nessorhinini and Oxyrhachini (both formerly treated as subfamilies, now syn.n. and syn.reinst., respectively, of Centrotinae). In contrast to previous analyses, a clade comprising Nicomiinae, Centronodinae, Centrodontinae, and the unplaced genera Holdgatiella Evans, Euwalkeria Goding and Antillotolania Ramos was recovered, but relationships within this clade were not well resolved. Nodonica bispinigera, gen.n. and sp.n., is described and placed in Centrodontini based on its sister‐group relationship to a clade comprising previously described genera of this tribe. Membracinae and Heteronotinae were consistently monophyletic. Neither Darninae nor Smiliinae, as previously defined, was monophyletic on the maximally parsimonious cladograms, but constraining both as monophyletic groups required only one additional step. The monophyly of Stegaspidinae, including Deiroderes Ramos (unplaced in Membracidae), was supported on some but not all equally parsimonious cladograms. More detailed analyses of individual subfamilies, as well as morphological data on the undescribed immatures of several membracid tribes and genera, will be needed to elucidate relationships among tribes and genera. A key to the subfamilies and tribes is provided.  相似文献   

9.
Abstract We develop a morphological dataset for the rove beetle subfamily Euaesthetinae comprising 167 morphological characters (135 adult and 32 larval) scored from 30 terminal taxa including 25 ingroup terminals (from subfamilies Euaesthetinae and Steninae) and five outgroups. Four maximum parsimony analyses using different sets of terminals and character sets were run to test the monophyly of (1) Euaesthetinae, (2) Steninae, (3) Euaesthetinae + Steninae, (4) euaesthetine tribes Austroesthetini, Alzadaesthetini, Euaesthetini, Fenderiini and Stenaesthetini, and (5) the ten currently known austral endemic genera together. Analyses of adult and larval character sets separately and in combination recovered the monophyly of Euaesthetinae, Steninae, and both subfamilies together, with strong support. Analysis of 13 ingroup terminals for which complete data were available suggests that monophyly of Euaesthetinae is supported by 19 synapomorphies (13 adult, six larval), of Steninae by 23 synapomorphies (14 adult, nine larval), and of both subfamilies together by 24 synapomorphies (21 adult, three larval). Within Euaesthetinae, only the tribe Stenaesthetini was recovered as monophyletic based on adult characters, and in no analyses were the ten austral endemic genera recovered as a monophyletic group. Phylogenetic relationships among euaesthetine genera were weakly supported, although analyses including adult characters supported monophyly of Octavius and Protopristus separately, and of Octavius + Protopristus, Austroesthetus + Chilioesthetus and Edaphus + Euaesthetus. Steninae may include a third genus comprising two undescribed species probably possessing a ‘stick–capture’ method of prey capture, similar to that in Stenus. These two species formed a strongly supported clade recovered as the sister group of Stenus based on adult characters. Diagnoses and a key to adults are provided for the 15 euaesthetine genera currently known from the austral region (Australia, New Zealand, South Africa and southern South America). Euaesthetine larvae previously were known only for Euaesthetus, and we describe the larvae of nine more genera and provide the first larval identification key for genera of Euaesthetinae.  相似文献   

10.
11.
Resolving the phylogenetic relationships of the deep nodes of papilionoid legumes (Papilionoideae) is essential to understanding the evolutionary history and diversification of this economically and ecologically important legume subfamily. The early-branching papilionoids include mostly Neotropical trees traditionally circumscribed in the tribes Sophoreae and Swartzieae. They are more highly diverse in floral morphology than other groups of Papilionoideae. For many years, phylogenetic analyses of the Papilionoideae could not clearly resolve the relationships of the early-branching lineages due to limited sampling. In the eight years since the publication of Legumes of the World, we have seen an extraordinary wealth of new molecular data for the study of Papilionoideae phylogeny, enabling increasingly greater resolution and many surprises. This study draws on recent molecular phylogenetic studies and a new comprehensive Bayesian phylogenetic analysis of 668 plastid matK sequences. The present matK phylogeny resolves the deep-branching relationships of the papilionoids with increased support for many clades, and suggests that taxonomic realignments of some genera and of numerous tribes are necessary. The potentially earliest-branching papilionoids fall within an ADA clade, which includes the recircumscribed monophyletic tribes Angylocalyceae, Dipterygeae, and Amburanae. The genera Aldina and Amphimas represent two of the nine main but as yet unresolved lineages comprising the large 50-kb inversion clade. The quinolizidine-alkaloid-accumulating Genistoid s.l. clade is expanded to include Dermatophyllum and a strongly supported and newly circumscribed tribe Ormosieae. Sophoreae and Swartzieae are dramatically reorganized so as to comprise monophyletic groups within the Core Genistoid clade and outside the 50-kb inversion clade, respectively. Acosmium is excluded from the Genistoids s.l. and strongly resolved within the newly circumscribed tribe Dalbergieae. By providing a better resolved phylogeny of the earliest-branching papilionoids, this study, in combination with other recent evidence, will lead to a more stable phylogenetic classification of the Papilionoideae.  相似文献   

12.
Espíndola, A., Buerki, S., Jacquier, A., Je?ek, J. & Alvarez, N. (2012). Phylogenetic relationships in the subfamily Psychodinae (Diptera, Psychodidae). —Zoologica Scripta, 41, 489–498. Thanks to recent advances in molecular systematics, our knowledge of phylogenetic relationships within the order Diptera has dramatically improved. However, relationships at lower taxonomic levels remain poorly investigated in several neglected groups, such as the highly diversified moth‐fly subfamily Psychodinae (Lower Diptera), which occurs in numerous terrestrial ecosystems. In this study, we aimed to understand the phylogenetic relationships among 52 Palearctic taxa from all currently known Palearctic tribes and subtribes of this subfamily, based on mitochondrial DNA. Our results demonstrate that in light of the classical systematics of Psychodinae, none of the tribes sensu Je?ek or sensu Vaillant is monophyletic, whereas at least five of the 12 sampled genera were not monophyletic. The results presented in this study provide a valuable backbone for future work aiming at identifying morphological synapomorphies to propose a new tribal classification.  相似文献   

13.
A comprehensive higher‐level phylogeny of diving beetles (Dytiscidae) based on larval characters is presented. Larval morphology and chaetotaxy of a broad range of genera and species was studied, covering all currently recognized subfamilies and tribes except for the small and geographically restricted Hydrodytinae, where the larva is unknown. The results suggest several significant conclusions with respect to the systematics of Dytiscidae including the following: monophyly of all currently recognized subfamilies, although Dytiscinae when considered in a broad context is rendered paraphyletic by Cybistrinae; currently recognized tribes are monophyletic except for Agabini, Hydroporini and Laccornellini; inter‐subfamily and inter‐tribe relationships generally show weak support, except for a few well supported clades; three distinct clades are recognized within Dytiscinae [Dytiscini sensu lato (i.e. including the genera Dytiscus Linnaeus and Hyderodes Hope), Hydaticini sensu lato, and Cybistrini]; and recognition of Pachydrini as a distinct tribe. Other less robust results include: Methlini sister to the rest of Hydroporinae; relative basal position of Laccornini, Hydrovatini and Laccornellini within Hydroporinae; close relationship of Agabinae and Copelatinae; Matinae nested deep within Dytiscidae, as sister to a large clade including Colymbetinae, Coptotominae, Lancetinae and Dytiscinae sensu lato; the sister‐group relationship of Agabetini and Laccophilini is confirmed. The results presented here are discussed and compared with previous phylogenetic hypotheses based on different datasets, and the evolution of some significant morphological features is discussed in light of the proposed phylogeny. All suprageneric taxa are diagnosed, including illustrations of all relevant synapomorphies, and a key to separate subfamilies and tribes is presented, both in traditional (paper) format and as an online Lucid interactive identification key.  相似文献   

14.
15.
Elven, E., Bachmann, L. & Gusarov V. I. (2012) Molecular phylogeny of the Athetini–Lomechusini–Ecitocharini clade of aleocharine rove beetles (Insecta). —Zoologica Scripta, 41, 617–636. It has previously been shown that the Aleocharinae tribes Athetini and Lomechusini form a well‐supported clade, which also includes the small Neotropical tribe Ecitocharini. However, neither Athetini nor Lomechusini were recovered as monophyletic. In this study, we addressed the basal phylogenetic relationships among the three tribes using sequence data from (i) a mitochondrial fragment covering the COI, Leu2 and COII genes; (ii) a mitochondrial fragment covering part of the 16S gene, the Leu1 gene and part of the NADH 1 gene; and (iii) a part of the nuclear 18S gene, for 68 Athetini, 33 Lomechusini and 2 Ecitocharini species, plus representatives from 10 other tribes. The athetine subtribe Geostibina was recovered as sister group to the ‘true Lomechusini’, which included the type genus Lomechusa. The two clades formed a sister group to the main Athetini clade, which also included Ecitocharini and the ‘false Lomechusini’, a group of New World genera normally placed in Lomechusini. The following changes in classification are proposed: (i) Geostibina Seevers, 1978 is raised to tribal rank, and 13 Athetini genera are placed in Geostibini; (ii) Ecitodonia Seevers, 1965; Ecitopora Wasmann, 1887, and Tetradonia Wasmann, 1894 are moved from Lomechusini to Athetini; (iii) Ecitocharini Seevers, 1965 is placed in synonymy with Athetini; (iv) Discerota Mulsant & Rey, 1874 is tentatively included in Oxypodini; (v) Actocharina Bernhauer, 1907 is placed in synonymy with Hydrosmecta Thomson, 1858.  相似文献   

16.
17.
The taxonomy and phylogeny of Penaeoidea have long been fraught with controversy. Here, we carried out the first mitochondrial phylogenomic analysis on all the penaeoid families and tribes, including nine newly sequenced and 14 published mitogenomes, towards elucidating the phylogeny and evolutionary history of Penaeoidea. All these nine mitogenomes exhibit the pancrustacean ground pattern, except that Benthonectes filipes contains two additional clusters of tRNAAla, tRNAArg and tRNAAsn and an uncommon noncoding region. The resulted phylogenetic tree is generally well resolved with Benthesicymidae sister to Aristeidae, forming a clade with Solenoceridae. Contrary to traditional classification, this clade has a sister relationship with the tribe Penaeini of the family Penaeidae. The family Sicyoniidae is deeply nested within the penaeid tribe Trachypenaeini which forms a sister clade with the remaining penaeid tribe, Parapenaeini. As the family Penaeidae is recovered to be polyphyletic, the three tribes in Penaeidae are all elevated to familial status. On the other hand, the family Sicyoniidae is retained to accommodate Trachypenaeini because they are now synonyms and the former name is more senior. This work is the first molecular analysis concurring with the latest findings in fossil assessments showing that Parapeaneini is the most primitive in Penaeoidae. Our results also illustrate a shallow‐water origin and an onshore–offshore evolutionary shift in penaeoid shrimps.  相似文献   

18.
The first comprehensive phylogenetic analyses of the most diverse subfamily of plant bugs, Mirinae, is presented in this study, for 110 representative taxa based on total evidence analysis. A total of 85 morphological characters and 3898 bp of mitochondrial (16S, COI) and nuclear (18S, 28S) sequences were analysed for each partitioned and combined dataset based on parsimony, maximum likelihood and Bayesian inference. Major results obtained in this study include monophyly of the tribe Mecistoscelini. The largest tribe, Mirini, was recovered as polyphyletic, and Stenodemini was recovered as paraphyletic. The clade of Stenodemini + Mecistoscelini is the sister group of the remaining Mirinae. The monophyly of two complexes composed of superficially similar genera were tested; the Lygus complex was recovered as nonmonophyletic, and the Adelphocoris–Creontiades–Megacoelum complex was confirmed to be monophyletic. The generic relationships of the main clades within each tribe based on the phylogeny, as well as their supported morphological characters, are discussed.  相似文献   

19.
Reconstructing the phylogeny of the sexually deceptive orchid genus Ophrys is crucial to our understanding of the evolution of its complex floral morphology. Molecular phylogenetic analyses showed that section Pseudophrys forms a well supported clade with Ophrys bombyliflora, O. tenthredinifera and O. speculum, but were unable to elucidate the relationships between these four groups of taxa. Here we conduct a morphological phylogenetic analysis of this unresolved clade of Ophrys based on a data matrix of 45 macro‐ and micromorphological and anatomical floral characters, using maximum parsimony and Bayesian inference. Our cladistic analysis yielded a single most parsimonious tree and a Bayesian 50% majority‐rule consensus tree which differed in their overall topology but agreed that O. tenthredinifera and O. bombyliflora are not sister groups. The phylogenetic placement of O. tenthredinifera was ambiguous since it shares six valid synapomorphies each with the cluster of O. speculumO. bombyliflora and with section Pseudophrys. In contrast, O. bombyliflora is most likely the sister group to O. speculum, a finding that rejects an earlier morphological phylogenetic hypothesis and favours the existing molecular trees based on nuclear ITS rather than plastid data. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 454–476.  相似文献   

20.
Legume subfamily Caesalpinioideae accommodates approximately 2250 species in 171 genera which traditionally are placed in four tribes: Caesalpinieae, Cassieae, Cercideae and Detarieae. The monophyletic tribe Detarieae includes the Amherstieae subclade which contains about 55 genera. Our knowledge of the relationships among those genera is good in some cases but for many other genera phylogenetic relationships have been unclear. The non-monophyletic nature of at least two amherstioid genera, Cynometra and Hymenostegia has also complicated the picture. During the course of a multi-disciplinary study of Hymenostegia sensu lato, which includes phylogenetic analyses based on matK and trnL data, we have recovered the “Scorodophloeus clade”, an exclusively tropical African clade of four genera which includes the eponymous genus Scorodophloeus, two undescribed generic segregates of Hymenostegia sensu lato, and the previously unsampled rare monospecific genus Micklethwaitia from Mozambique. Zenkerella is suggested as a possible sister genus to the Scorodophloeus clade. A distribution map is presented of the seven species that belong to the Scorodophloeus clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号