首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The mechanism that coordinates cell growth and cell cycle progression remains poorly understood; in particular, whether the cell cycle and cell wall biosynthesis are coordinated remains unclear. Recently, cell wall biosynthesis and cell cycle progression were reported to respond to wounding. Nonetheless, no genes are reported to synchronize the biosynthesis of the cell wall and the cell cycle. Here, we report that wounding induces the expression of genes associated with cell wall biosynthesis and the cell cycle, and that two genes, AtMYB46 in Arabidopsis thaliana and RrMYB18 in Rosa rugosa, are induced by wounding. We found that AtMYB46 and RrMYB18 promote the biosynthesis of the cell wall by upregulating the expression of cell wall-associated genes, and that both of them also upregulate the expression of a battery of genes associated with cell cycle progression. Ultimately, this response leads to the development of curled leaves of reduced size. We also found that the coordination of cell wall biosynthesis and cell cycle progression by AtMYB46 and RrMYB18 is evolutionarily conservative in multiple species. In accordance with wounding promoting cell regeneration by regulating the cell cycle, these findings also provide novel insight into the coordination between cell growth and cell cycle progression and a method for producing miniature plants.  相似文献   

4.
The cell wall of Aspergillus fumigatus is predominantly composed of polysaccharides. The central fibrillar core of the cell wall is composed of a branched β(1‐3)glucan, to which the chitin and the galactomannan are covalently bound. Softening of the cell wall is an essential event during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosyl hydrolases. In this study, we characterised the role of the glycosyl hydrolase GH55 members in A. fumigatus fungal morphogenesis. We showed that deletion of the six genes of the GH55 family stopped conidial cell wall maturation at the beginning of the development process, leading to abrogation of conidial separation: the shape of conidia became ovoid, and germination was delayed. In conclusion, the reorganisation and structuring of the conidial cell wall mediated by members of the GH55 family is essential for their maturation, normal dissemination, and germination.  相似文献   

5.
Growth hormone receptor (GHR), the cognate receptor of growth hormone (GH), is a membrane bound receptor that belongs to the class I cytokine receptor superfamily. GH binding GHR induces cell differentiation and maturation, initiates the anabolism inside the cells and promotes cell proliferation. Recently, GHR has been reported to be associated with various types of cancer. However, the underlying mechanism of GHR in gastric cancer has not been defined. Our results showed that silence of GHR inhibited the growth of SGC-7901 and MGC-803 cells, and tumour development in mouse xenograft model. Flow cytometry showed that GHR knockout significantly stimulated gastric cancer cell apoptosis and caused G1 cell cycle arrest, which was also verified by Western blot that GHR deficiency induced the protein level of cleaved-PARP, a valuable marker of apoptosis. In addition, GHR deficiency inhibited the activation of PI3K/AKT signalling pathway. On the basis of the results, that GHR regulates gastric cancer cell growth and apoptosis through controlling G1 cell cycle progression via mediating PI3K/AKT signalling pathway. These findings provide a novel understanding for the role of GHR in gastric cancer.  相似文献   

6.
The aldo‐keto reductases family 1 member C2 (AKR1C2) has critical roles in the tumorigenesis and progression of malignant tumours. However, it was also discovered to have ambiguous functions in multiple cancers and till present, its clinical significance and molecular mechanism in oesophageal squamous cell carcinoma (ESCC) has been unclear. The aim of this study was to explore the role of AKR1C2 in the tumorigenesis of ESCC. Here, we showed that AKR1C2 expression was found to be up‐regulated in ESCC tissues and was significantly associated with pathological stage, lymph node metastasis and worse outcomes. Functional assays demonstrated that an ectopic expression of AKR1C2 in ESCC cells resulted in increased proliferation, migration and cisplatin resistance, while knockdown led to inversing effects. Bioinformation analyses and mechanistic studies demonstrated that AKR1C2 activated the PI3K/AKT signalling pathway, furthermore, the inhibitor of PI3K or the selective inhibitor of AKR1C2 enzyme activity could reverse the aggressiveness and showed synergistic antitumour effect when combined with cisplatin, both in vitro and in vivo. In conclusion, Our findings revealed that AKR1C2 could function as an oncogene by activating the PI3K/AKT pathway, as a novel prognostic biomarker and/or as a potential therapeutic target to ESCC.  相似文献   

7.
红豆杉悬浮培养细胞具有可持续生产抗癌药物紫杉醇及其他紫杉烷的潜力。在中国红豆杉悬浮培养细胞中,云南紫杉烷 C(Tc) 是主要的次生代谢产物。为促使代谢前体由生成其他紫杉烷的代谢支路转到生产紫杉醇,实验采用实时定量PCR技术 (RQ-PCR) 揭示细胞培养过程中紫杉醇及紫杉烷合成关键基因的动态变化。在细胞培养的第7天和第12天,以100 μmol/L 2,3-二羟丙基茉莉酸 (DHPJA) 进行诱导,同时在第7天饲喂20 g/L的蔗糖,在此过程中考察6个关键基因 (TASY,TDAT,T5αH,TαH,T10βH和T14βH) 的表达变化。上述联合调控手段使得Tc产量在第1次诱导8 d后达 (554.46±21.28) mg/L,第2次诱导9 d后高达 (997.72±1.51) mg/L。代谢早期基因TASY和TDAT在第1次诱导后表达量分别提高了182和98倍,在第2次诱导后表达量分别提高了208和131倍。在每次诱导后基因表达量提高约持续24 h,之后下降。其他4个基因 (T5αH、TαH、T10βH和T14βH) 的情况有所不同。基因TαH在2次诱导后表达量分别提高了3 061和1 016倍。其他3个基因T5αH、T10βH、T14βH在第1次诱导后表达量分别提高13、38、20倍,在第2次诱导后分别提高7、16、6倍。RQ-PCR结果表明基因表达和Tc积累之间存在紧密相关性:基因表达的变化与Tc产量的变化相一致,诱导可提高6个基因的表达量。基因的高表达随着培养过程逐渐衰减,再次诱导可再次促使基因的高表达。  相似文献   

8.
SWI2/SNF2 chromatin remodeling ATPases play important roles in plant and metazoan development. Whereas metazoans generally encode one or two SWI2/SNF2 ATPase genes, Arabidopsis encodes four such chromatin regulators: the well‐studied BRAHMA and SPLAYED ATPases, as well as two closely related non‐canonical SWI2/SNF2 ATPases, CHR12 and CHR23. No developmental role has as yet been described for CHR12 and CHR23. Here, we show that although strong single chr12 or chr23 mutants are morphologically indistinguishable from the wild type, chr12 chr23 double mutants cause embryonic lethality. The double mutant embryos fail to initiate root and shoot meristems, and display few and aberrant cell divisions. Weak double mutant embryos give rise to viable seedlings with dramatic defects in the maintenance of both the shoot and the root stem cell populations. Paradoxically, the stem cell defects are correlated with increased expression of the stem cell markers WUSCHEL and WOX5. During subsequent development, the meristem defects are partially overcome to allow for the formation of very small, bushy adult plants. Based on the observed morphological defects, we named the two chromatin remodelers MINUSCULE 1 and 2. Possible links between minu1 minu2 defects and defects in hormone signaling and replication‐coupled chromatin assembly are discussed.  相似文献   

9.
Sphingosine-1-phosphate (S1P) induces capillary formation of endothelial cells on Matrigel in accompany with actin assembly and accumulation of cortactin and Arp2/3 complex at the cell-leading edge. Suppression of cortactin expression with a cortactin antisense oligo significantly impaired S1P-induced capillary formation, migration of endothelial cells, and actin assembly at the cell periphery. Overexpression of wild-type cortactin tagged by green fluorescent protein (GFP) increased the S1P-induced tube formation and cell motility, whereas the cells overexpressing the mutant formed poorly capillary network and became less motile in response to S1P. Analysis of distribution in Triton X-100 insoluble fractions demonstrated that the cortactin mutant inhibited the association of wild-type cortactin and Arp2/3 complex with the actin-enriched complex. Furthermore, actin polymerization at and distribution of Arp2/3 complex as well as endogenous cortactin into the cell-leading edge mediated by S1P was disturbed. These data suggest that the interaction between cortactin and Arp2/3 complex plays an important role in S1P-mediated remodeling of endothelial cells.  相似文献   

10.
The formulation of quercetin nanoliposomes (QUE-NLs) has been shown to enhance QUE antitumor activity in C6 glioma cells. At high concentrations, QUE-NLs induce necrotic cell death. In this study, we probed the molecular mechanisms of QUE-NL-induced C6 glioma cell death and examined whether QUE-NL-induced programmed cell death involved Bcl-2 family and mitochondrial pathway through STAT3 signal transduction pathway. Downregulation of Bcl-2 and the overexpression of Bax by QUE-NL supported the involvement of Bcl-2 family proteins upstream of C6 glioma cell death. In addition, the activation of JAK2 and STAT3 were altered following exposure to QUE-NLs in C6 glioma cells, suggesting that QUE-NLs downregulated Bcl-2 mRNAs expression and enhanced the expression of mitochondrial mRNAs through STAT3-mediated signaling pathways either via direct or indirect mechanisms. There are several components such as ROS, mitochondrial, and Bcl-2 family shared by the necrotic and apoptotic pathways. Our studies indicate that the signaling cross point of the mitochondrial pathway and the JAK2/STAT3 signaling pathway in C6 glioma cell death is modulated by QUE-NLs. In conclusion, regulation of JAK2/STAT3 and ROS-mediated mitochondrial pathway agonists alone or in combination with treatment by QUE-NLs could be a more effective method of treating chemical-resistant glioma.  相似文献   

11.
12.
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management.  相似文献   

13.
14.
15.
Proteinase-activated receptor-2 (PAR2) plays pro-inflammatory roles in many organs including the gastrointestinal (GI) tract. To clarify the downstream pro-inflammatory signaling of PAR2 in the GI tract, we examined interleukin-8 (IL-8) release and the underlying cellular signaling following PAR2 stimulation in human colorectal cancer-derived HCT-15 cells and human gastric adenocarcinoma-derived MKN-45 cells. A PAR2-activating peptide, but not a PAR2-inactive scrambled peptide or a PAR1- activating peptide, caused IL-8 release in these GI epithelial cells. The PAR2-triggered IL-8 release was suppressed by inhibitors of MEK (U0126) or PI3-kinase (LY294002), and PAR2 stimulation indeed activated the downstream kinases, ERK and Akt. U0126 blocked the phosphorylation of ERK, but not Akt, and LY294002 blocked the phosphorylation of Akt, but not ERK. Together, PAR2 triggers IL-8 release via two independent signaling pathways, MEK/ERK and PI3-kinase/Akt, suggesting a role of PAR2 as a pro-inflammatory receptor in the GI tract.  相似文献   

16.
17.
18.
The activation of extracellular signal-regulated kinases (ERK1/2) has been associated with specific outcomes. Sustained activation of ERK1/2 by nerve growth factor (NGF) is associated with translocation of ERKs to the nucleus of PC12 cells and precedes their differentiation into sympathetic-like neurons whereas transient activation by epidermal growth factor (EGF) leads to cell proliferation. It was demonstrated that different growth factors initiating the same cellular signaling pathways may lead to the different cell destiny, either to proliferation or to the inhibition of mitogenesis and apoptosis. Thus, further investigation on kinetic differences in activation of certain signal cascades in different cell types by biologically different agents are necessary for understanding the mechanisms as to how cells make a choice between proliferation and differentiation.It was reported that chitinase 3-like 1 (CHI3L1) protein promotes the growth of human synovial cells as well as skin and fetal lung fibroblasts similarly to insulin-like growth factor 1 (IGF1). Both are involved in mediating the mitogenic response through the signal-regulated kinases ERK1/2. In addition, CHI3L1 which is highly expressed in different tumors including glioblastomas possesses oncogenic properties. As we found earlier, chitinase 3-like 2 (CHI3L2) most closely related to human CHI3L1 also showed increased expression in glial tumors at both the RNA and protein levels and stimulated the activation of the MAPK pathway through phosphorylation of ERK1/2 in 293 and U87 MG cells. The work described here demonstrates the influence of CHI3L2 and CHI3L1 on the duration of MAPK cellular signaling and phosphorylated ERK1/2 translocation to the nucleus. In contrast to the activation of ERK1/2 phosphorylation by CHI3L1 that leads to a proliferative signal (similar to the EGF effect in PC12 cells), activation of ERK1/2 phosphorylation by CHI3L2 (similar to NGF) inhibits cell mitogenesis and proliferation.  相似文献   

19.
HOM/C homeobox (Hox) and forkhead box (Fox) factors are reported to be expressed in the foregut endoderm and are subsequently detected in a spatio-temporal pattern during lung development. Some of these factors were reported to influence the expression of lung marker proteins or to modulate lung development. To clarify the molecular mechanisms for generating functional lung cells from progenitor cell populations, we introduced the forkhead box factors, FoxA1 and FoxA2, and the homeobox factor, HoxB3, into the differentiation process in a multipotent hamster lung epithelial M3E3/C3 cell line. Ectopic expression of FoxA2 promoted differentiation to Clara-like cells with up-regulation of the expression of the lung marker proteins, Clara cell-specific 10-kDa protein and surfactant protein-B. In contrast, FoxA1 repressed the differentiation. HoxB3 transfection induced FoxA2 expression transiently at the pre-differentiation stage. The endogenous HoxB3 expression level decreased at later stages of Clara-like cell differentiation, and the attenuation was enhanced by FoxA2 transfection. HoxB3 is a putative upstream regulator that enhances FoxA2 expression at the pre-differentiation stage. In addition, we found that the expression of HoxA4, HoxA5, and HoxC9 increased differentially during Clara-like cell differentiation. These results suggest that HoxB3 may be a putative positive regulator of FoxA2 expression at the pre-differentiation stage, and those interactions of Fox factors and Hox factors could participate in Clara cell differentiation.  相似文献   

20.
Insulin‐like growth factor‐2 messenger RNA‐binding protein 3 (IGF2BP3) has been reported to contribute to tumorigenesis in several human cancers. However, the biological functions of IGF2BP3 in bladder cancer are poorly understood. We investigated the relation between IGF2BP3 expression and prognosis of bladder cancer patients. Cell proliferation, cell cycle and cell apoptosis assays were performed to assess IGF2BP3 functions. The results showed that IGF2BP3 was overexpressed in bladder cancer tissues compared with that in normal bladder tissues, and its higher expression was closely correlated with poor prognosis in bladder cancer patients. Overexpression of IGF2BP3 markedly promoted cell proliferation and cell cycle progression and inhibited cell apoptosis, while knockdown of IGF2BP3 notably suppressed the proliferation, promoted cell apoptosis and induced cell cycle arrest at the G0/G1 phase. Mechanistically, we revealed that IGF2BP3 promotes the activation of the JAK/STAT pathway in bladder cancer cells. Moreover, the JAK/STAT inhibitor dramatically blocked the tumour‐promoting activity of IGF2BP3. Tumour growth in vivo was also suppressed by knocking down of IGF2BP3. Hence, IGF2BP3 facilitated bladder cancer cell proliferation by activating the JAK/STAT signalling pathway. These findings suggest that IGF2BP3 exhibits an oncogenic effect in human bladder cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号