首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plant height and branch number are essential components of rapeseed plant architecture and are directly correlated with its yield. Presently, improvement of plant architecture is a major challenge in rapeseed breeding. In this study, we first verified that the two rapeseed BnaMAX1 genes had redundant functions resembling those of Arabidopsis MAX1, which regulates plant height and axillary bud outgrowth. Therefore, we designed two sgRNAs to edit these BnaMAX1 homologs using the CRISPR/Cas9 system. The T0 plants were edited very efficiently (56.30%–67.38%) at the BnaMAX1 target sites resulting in homozygous, heterozygous, bi‐allelic and chimeric mutations. Transmission tests revealed that the mutations were passed on to the T1 and T2 progeny. We also obtained transgene‐free lines created by the CRISPR/Cas9 editing, and no mutations were detected in potential off‐target sites. Notably, simultaneous knockout of all four BnaMAX1 alleles resulted in semi‐dwarf and increased branching phenotypes with more siliques, contributing to increased yield per plant relative to wild type. Therefore, these semi‐dwarf and increased branching characteristics have the potential to help construct a rapeseed ideotype. Significantly, the editing resources obtained in our study provide desirable germplasm for further breeding of high yield in rapeseed.  相似文献   

2.
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.  相似文献   

3.
The recently emerged CRISPR/Cas9 approach represents an efficient and versatile genome editing tool for producing genetically modified animals. Β‐carotene oxygenase 2 (BCO2) is a key enzyme in the progress of β‐carotene metabolism and is associated with yellow adipose tissue color in sheep. We have recently demonstrated targeted multiplex mutagenesis in sheep and have generated a group of BCO2‐disrupted sheep by zygote injection of the CRISPR/Cas9 components. Here, we show that biallelic modification of BCO2 resulted in yellow fat, compared with the fat color in monoallelic individuals and wild types (snow‐flower white). We subsequently characterized the effects of gene modifications at genetic levels employing sequencing and Western blotting, highlighting the importance of the BCO2 gene for the determination of fat color in sheep. These results indicate that genetic modification via CRISPR/Cas9 holds great potential for validating gene functions as well as for generating desirable phenotypes for economically important traits in livestock.  相似文献   

4.
CRISPR/Cas9 is a powerful genome editing tool in many organisms, including a number of monocots and dicots. Although the design and application of CRISPR/Cas9 is simpler compared to other nuclease‐based genome editing tools, optimization requires the consideration of the DNA delivery and tissue regeneration methods for a particular species to achieve accuracy and efficiency. Here, we describe a public sector system, ISU Maize CRISPR, utilizing Agrobacterium‐delivered CRISPR/Cas9 for high‐frequency targeted mutagenesis in maize. This system consists of an Escherichia coli cloning vector and an Agrobacterium binary vector. It can be used to clone up to four guide RNAs for single or multiplex gene targeting. We evaluated this system for its mutagenesis frequency and heritability using four maize genes in two duplicated pairs: Argonaute 18 (ZmAgo18a and ZmAgo18b) and dihydroflavonol 4‐reductase or anthocyaninless genes (a1 and a4). T0 transgenic events carrying mono‐ or diallelic mutations of one locus and various combinations of allelic mutations of two loci occurred at rates over 70% mutants per transgenic events in both Hi‐II and B104 genotypes. Through genetic segregation, null segregants carrying only the desired mutant alleles without the CRISPR transgene could be generated in T1 progeny. Inheritance of an active CRISPR/Cas9 transgene leads to additional target‐specific mutations in subsequent generations. Duplex infection of immature embryos by mixing two individual Agrobacterium strains harbouring different Cas9/gRNA modules can be performed for improved cost efficiency. Together, the findings demonstrate that the ISU Maize CRISPR platform is an effective and robust tool to targeted mutagenesis in maize.  相似文献   

5.
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.  相似文献   

6.
CRISPR/Cas9 has been widely used for genome editing in many organisms, including important crops like wheat. Despite the tractability in designing CRISPR/Cas9, efficacy in the application of this powerful genome editing tool also depends on DNA delivery methods. In wheat, the biolistics based transformation is the most used method for delivery of the CRISPR/Cas9 complex. Due to the high frequency of gene silencing associated with co‐transferred plasmid backbone and low edit rate in wheat, a large T0 transgenic plant population are required for recovery of desired mutations, which poses a bottleneck for many genome editing projects. Here, we report an Agrobacterium‐delivered CRISPR/Cas9 system in wheat, which includes a wheat codon optimized Cas9 driven by a maize ubiquitin gene promoter and a guide RNA cassette driven by wheat U6 promoters in a single binary vector. Using this CRISPR/Cas9 system, we have developed 68 edit mutants for four grain‐regulatory genes, TaCKX2‐1, TaGLW7, TaGW2, and TaGW8, in T0, T1, and T2 generation plants at an average edit rate of 10% without detecting off‐target mutations in the most Cas9‐active plants. Homozygous mutations can be recovered from a large population in a single generation. Different from most plant species, deletions over 10 bp are the dominant mutation types in wheat. Plants homozygous of 1160‐bp deletion in TaCKX2‐D1 significantly increased grain number per spikelet. In conclusion, our Agrobacterium‐delivered CRISPR/Cas9 system provides an alternative option for wheat genome editing, which requires a small number of transformation events because CRISPR/Cas9 remains active for novel mutations through generations.  相似文献   

7.
8.
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is severely damaging to the global citrus industry. Targeted editing of host disease‐susceptibility genes represents an interesting and potentially durable alternative in plant breeding for resistance. Here, we report improvement of citrus canker resistance through CRISPR/Cas9‐targeted modification of the susceptibility gene CsLOB1 promoter in citrus. Wanjincheng orange (Citrus sinensis Osbeck) harbours at least three copies of the CsLOB1G allele and one copy of the CsLOB1? allele. The promoter of both alleles contains the effector binding element (EBEPthA4), which is recognized by the main effector PthA4 of Xcc to activate CsLOB1 expression to promote citrus canker development. Five pCas9/CsLOB1sgRNA constructs were designed to modify the EBEPthA4 of the CsLOB1 promoter in Wanjincheng orange. Among these constructs, mutation rates were 11.5%–64.7%. Homozygous mutants were generated directly from citrus explants. Sixteen lines that harboured EBEPthA4 modifications were identified from 38 mutant plants. Four mutation lines (S2‐5, S2‐6, S2‐12 and S5‐13), in which promoter editing disrupted CsLOB1 induction in response to Xcc infection, showed enhanced resistance to citrus canker compared with the wild type. No canker symptoms were observed in the S2‐6 and S5‐13 lines. Promoter editing of CsLOB1G alone was sufficient to enhance citrus canker resistance in Wanjincheng orange. Deletion of the entire EBEPthA4 sequence from both CsLOB1 alleles conferred a high degree of resistance to citrus canker. The results demonstrate that CRISPR/Cas9‐mediated promoter editing of CsLOB1 is an efficient strategy for generation of canker‐resistant citrus cultivars.  相似文献   

9.
Flowering is an indication of the transition from vegetative growth to reproductive growth and has considerable effects on the life cycle of soya bean (Glycine max). In this study, we employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of GmFT2a, an integrator in the photoperiod flowering pathway in soya bean. The soya bean cultivar Jack was transformed with three sgRNA/Cas9 vectors targeting different sites of endogenous GmFT2a via Agrobacterium tumefaciens‐mediated transformation. Site‐directed mutations were observed at all targeted sites by DNA sequencing analysis. T1‐generation soya bean plants homozygous for null alleles of GmFT2a frameshift mutated by a 1‐bp insertion or short deletion exhibited late flowering under natural conditions (summer) in Beijing, China (N39°58′, E116°20′). We also found that the targeted mutagenesis was stably heritable in the following T2 generation, and the homozygous GmFT2a mutants exhibited late flowering under both long‐day and short‐day conditions. We identified some ‘transgene‐clean’ soya bean plants that were homozygous for null alleles of endogenous GmFT2a and without any transgenic element from the T1 and T2 generations. These ‘transgene‐clean’ mutants of GmFT2a may provide materials for more in‐depth research of GmFT2a functions and the molecular mechanism of photoperiod responses in soya bean. They will also contribute to soya bean breeding and regional introduction.  相似文献   

10.
11.
Processing of double‐stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL‐effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi‐allelic double mutant for the two soya bean paralogous Double‐stranded RNA‐binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9‐generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ‐line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer‐like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer‐like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole‐genome sequencing to reveal a spectrum of non‐germ‐line‐targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.  相似文献   

12.
CRISPR/Cas‐base editing is an emerging technology that could convert a nucleotide to another type at the target site. In this study, A3A‐PBE system consisting of human A3A cytidine deaminase fused with a Cas9 nickase and uracil glycosylase inhibitor was established and developed in allotetraploid Brassica napus. We designed three sgRNAs to target ALS, RGA and IAA7 genes, respectively. Base‐editing efficiency was demonstrated to be more than 20% for all the three target genes. Target sequencing results revealed that the editing window ranged from C1 to C10 of the PAM sequence. Base‐edited plants of ALS conferred high herbicide resistance, while base‐edited plants of RGA or IAA7 exhibited decreased plant height. All the base editing could be genetically inherited from T0 to T1 generation. Several Indel mutations were confirmed at the target sites for all the three sgRNAs. Furthermore, though no C to T substitution was detected at the most potential off‐target sites, large‐scale SNP variations were determined through whole‐genome sequencing between some base‐edited and wild‐type plants. These results revealed that A3A‐PBE base‐editing system could effectively convert C to T substitution with high‐editing efficiency and broadened editing window in oilseed rape. Mutants for ALS, IAA7 and RGA genes could be potentially applied to confer herbicide resistance for weed control or with better plant architecture suitable for mechanic harvesting.  相似文献   

13.
The Streptococcus‐derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single‐guide RNA (sgRNA) for target DNA recognition and the CRISPR‐associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ‐line‐specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ‐line‐specific promoters (pDD45‐GT and pLAT52‐GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population.  相似文献   

14.
In recent years, the type II CRISPR system has become a widely used and robust technique to implement site‐directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single‐site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the γ‐aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fifty‐three genome‐edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19‐fold higher than that in wild‐type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.  相似文献   

15.
Annualization of woody perennials has the potential to revolutionize the breeding and production of fruit crops and rapidly improve horticultural species. Kiwifruit (Actinidia chinensis) is a recently domesticated fruit crop with a short history of breeding and tremendous potential for improvement. Previously, multiple kiwifruit CENTRORADIALIS (CEN)‐like genes have been identified as potential repressors of flowering. In this study, CRISPR/Cas9‐ mediated manipulation enabled functional analysis of kiwifruit CEN‐like genes AcCEN4 and AcCEN. Mutation of these genes transformed a climbing woody perennial, which develops axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development. The number of affected genes and alleles and severity of detected mutations correlated with the precocity and change in plant stature, suggesting that a bi‐allelic mutation of either AcCEN4 or AcCEN may be sufficient for early flowering, whereas mutations affecting both genes further contributed to precocity and enhanced the compact growth habit. CRISPR/Cas9‐mediated mutagenesis of AcCEN4 and AcCEN may be a valuable means to engineer Actinidia amenable for accelerated breeding, indoor farming and cultivation as an annual crop.  相似文献   

16.
Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene‐edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high‐throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high‐throughput quantitative real‐time (qPCR)‐based method. The qPCR‐based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild‐type and a gene‐edited mutant. We showed that the qPCR‐based method can accurately distinguish CRISPR/Cas9‐induced mutants from the wild‐type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR‐based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T0 transgenic plants. In a 384‐well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post‐polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T0 transgenic plants, which will be widely used in the area of plant gene editing.  相似文献   

17.
The aromatic composition of lignin is an important trait that greatly affects the usability of lignocellulosic biomass. We previously identified a rice (Oryza sativa) gene encoding coniferaldehyde 5‐hydroxylase (OsCAld5H1), which was effective in modulating syringyl (S)/guaiacyl (G) lignin composition ratio in rice, a model grass species. Previously characterized OsCAld5H1‐knockdown rice lines, which were produced via an RNA‐interference approach, showed augmented G lignin units yet contained considerable amounts of residual S lignin units. In this study, to further investigate the effect of suppression of OsCAld5H1 on rice lignin structure, we generated loss‐of‐function mutants of OsCAld5H1 using the CRISPR/Cas9‐mediated genome editing system. Homozygous OsCAld5H1‐knockout lines harboring anticipated frame‐shift mutations in OsCAld5H1 were successfully obtained. A series of wet‐chemical and two‐dimensional NMR analyses on cell walls demonstrated that although lignins in the mutant were predictably enriched in G units all the tested mutant lines produced considerable numbers of S units. Intriguingly, lignin γ‐p‐coumaroylation analysis by the derivatization followed by reductive cleavage method revealed that enrichment of G units in lignins of the mutants was limited to the non‐γ‐p‐coumaroylated units, whereas grass‐specific γ‐p‐coumaroylated lignin units were almost unaffected. Gene expression analysis indicated that no homologous genes of OsCAld5H1 were overexpressed in the mutants. These data suggested that CAld5H is mainly involved in the production of non‐γ‐p‐coumaroylated S lignin units, common in both eudicots and grasses, but not in the production of grass‐specific γ‐p‐coumaroylated S units in rice.  相似文献   

18.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   

19.
CRISPR/Cas9 is a novel tool for targeted mutagenesis and is applicable to plants, including rice. Previous reports on CRISPR/Cas9 in rice have demonstrated that target mutations are transmitted to the next generation in accordance with Mendelian law, but heritability of the target mutation and the role of inherited Cas9 gene have not been fully elucidated. Here, we targeted the rice phytoene desaturase gene, mutants of which exhibit an albino phenotype, by using CRISPR/Cas9 and analyzed segregation of target mutations. Agrobacterium-mediated methods using immature embryos successfully transformed a CRISPR/Cas9 system into five rice cultivars and subsequently induced mutation. Unpredicted segregations, with more mutants than theoretically predicted, were frequently found in T1 plants from monoallelic T0 mutants. Chimeric plants with both biallelic and monoallelic mutated cells were also observed in the T1. Next, we followed segregation of a target mutation in the T2 from monoallelic T1 mutants. When T1 mutants possessed Cas9, unpredicted segregations of the target mutation and chimeric plants were observed again in the T2. When T1 mutants did not possess Cas9, segregation of the target mutations followed Mendelian law and no chimeric plants appeared in the T2. T2 mutants with Cas9 had mutations different from the original ones found in T0. Our results indicated that inherited Cas9 was still active in later generations and could induce new mutations in the progeny, leading to chimerism and unpredicted segregation. We conclude that Cas9 has to be eliminated by segregation in T1 to generate homozygous mutants without chimerism or unpredicted segregation.  相似文献   

20.
The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum aestivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fertility gene Ms1, it is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Gladius, and several of the selected male‐sterile lines were potentially non‐transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in commercial wheat cultivars. This represents an important step towards capturing heterosis to improve wheat yields, through the production and use of hybrid seed on an industrial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号