首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil‐borne bacteria, is a potent plant‐growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin‐signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport‐dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development.  相似文献   

4.
Previous studies have demonstrated that auxin (indole-3-acetic acid) and nitric oxide (NO) are plant growth regulators that coordinate several plant physiological responses determining root architecture. Nonetheless, the way in which these factors interact to affect these growth and developmental processes is not well understood. The Arabidopsis thaliana F-box proteins TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) are auxin receptors that mediate degradation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors to induce auxin-regulated responses. A broad spectrum of NO-mediated protein modifications are known in eukaryotic cells. Here, we provide evidence that NO donors increase auxin-dependent gene expression while NO depletion blocks Aux/IAA protein degradation. NO also enhances TIR1-Aux/IAA interaction as evidenced by pull-down and two-hybrid assays. In addition, we provide evidence for NO-mediated modulation of auxin signaling through S-nitrosylation of the TIR1 auxin receptor. S-nitrosylation of cysteine is a redox-based post-translational modification that contributes to the complexity of the cellular proteome. We show that TIR1 C140 is a critical residue for TIR1-Aux/IAA interaction and TIR1 function. These results suggest that TIR1 S-nitrosylation enhances TIR1-Aux/IAA interaction, facilitating Aux/IAA degradation and subsequently promoting activation of gene expression. Our findings underline the importance of NO in phytohormone signaling pathways.  相似文献   

5.
6.
7.
8.
9.
Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier‐like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed‐setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) ‐localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin‐related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits.  相似文献   

10.
11.
12.
13.
In rice, there are five members of the auxin carrier AUXIN1/LIKE AUX1 family; however, the biological functions of the other four members besides OsAUX1 remain unknown. Here, by using CRISPR/Cas9, we constructed two independent OsAUX3 knock‐down lines, osaux3‐1 and osaux3‐2, in wild‐type rice, Hwayoung (WT/HY) and Dongjin (WT/DJ). osaux3‐1 and osaux3‐2 have shorter primary roots (PRs), decreased lateral root (LR) density, and longer root hairs (RHs) compared with their WT. OsAUX3 expression in PRs, LRs, and RHs further supports that OsAUX3 plays a critical role in the regulation of root development. OsAUX3 locates at the plasma membrane and functions as an auxin influx carrier affecting acropetal auxin transport. OsAUX3 is up‐regulated in the root apex under aluminium (Al) stress, and osaux3‐2 is insensitive to Al treatments. Furthermore, 1‐naphthylacetic acid accented the sensitivity of WT/DJ and osaux3‐2 to respond to Al stress. Auxin concentrations, Al contents, and Al‐induced reactive oxygen species‐mediated damage in osaux3‐2 under Al stress are lower than in WT, indicating that OsAUX3 is involved in Al‐induced inhibition of root growth. This study uncovers a novel pathway alleviating Al‐induced oxidative damage by inhibition of acropetal auxin transport and provides a new option for engineering Al‐tolerant rice species.  相似文献   

14.
15.
16.
17.
Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS‐induced growth promotion facilitates rapid escape of the roots from non‐natural light. Meanwhile, long‐term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far‐red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot‐derived ABA signals induce a peroxidase‐mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark‐grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot‐to‐root ABA signaling links shoot phyB‐mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA‐mediated shoot‐to‐root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants.  相似文献   

18.
miR156 is an evolutionarily highly conserved miRNA in plants that defines an age‐dependent flowering pathway. The investigations thus far have largely, if not exclusively, confined to plant aerial organs. Root branching architecture is a major determinant of water and nutrients uptake for plants. We show here that MIR156 genes are differentially expressed in specific cells/tissues of lateral roots. Plants overexpressing miR156 produce more lateral roots whereas reducing miR156 levels leads to fewer lateral roots. We demonstrate that at least one representative from the three groups of miR156 targets SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE (SPL) genes: SPL3, SPL9 and SPL10 are involved in the repression of lateral root growth, with SPL10 playing a dominant role. In addition, both MIR156 and SPLs are responsive to auxin signaling suggesting that miR156/SPL modules might be involved in the proper timing of the lateral root developmental progression. Collectively, these results unravel a role for miR156/SPLs modules in lateral root development in Arabidopsis.  相似文献   

19.
Development and organogenesis in both dicot and monocot plants are highly dependent on polar auxin transport (PAT), which requires the proper asymmetric localization of both auxin influx and efflux carriers. In the model dicot plant Arabidopsis thaliana, the trafficking and localization of auxin efflux facilitators such as PIN-FORMED1 (PIN1) are mediated by GNOM, a guanine-nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF) family of small GTPases, but molecular regulators of the auxin influx facilitators remain unknown. Here, we show that over-expression of OsAGAP, an ARF-GTPase-activating protein (ARF-GAP) in rice, impaired PAT and interfered with both primary and lateral root development. The lateral root phenotype could be rescued by the membrane-permeable auxin 1-naphthyl acetic acid, but not by indole 3-acetic acid (IAA) or by 2,4-dichloro-phenoxyacetic acid, which require influx facilitators to enter the cells. OsAGAP-over-expressing plants had alterations in vesicle trafficking and localization of the presumptive A. thaliana auxin-influx carrier AUX1, but not in the localization of the auxin efflux facilitators. Together, our data suggest that OsAGAP has a specific role in regulating vesicle trafficking pathways such as the auxin influx pathway, which in turn controls auxin-dependent root growth in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号