首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
The 8,000 biogas plants currently in operation in Germany are mainly fed with biomass from annual crops. However, feedstock from perennial crops such as miscanthus is expected to be more environmentally benign. If miscanthus is to be used in greater amounts as a substrate for anaerobic digestion, storage will become a relevant topic, as a continuous supply of biomass throughout the year is necessary. The objective of this study was to identify the miscanthus harvest time that best balances the simultaneous achievement of high silage quality, high digestibility and high methane hectare yields. For this purpose, biomass from four miscanthus genotypes with varying senescence characteristics was harvested on three different dates in autumn 2017. Part of the biomass was ensiled, and the methane yield of both ensiled and non‐ensiled biomass was analysed in a biogas batch test to assess the effect of ensiling on the methane hectare yield and digestion velocity. The ensiled biomass was found to have an up to 7% higher substrate‐specific methane yield and also showed a higher digestion velocity than the non‐ensiled biomass. The silage quality was best when miscanthus was harvested in mid‐October, due to highest lactic acid content (average: 3.0% of DM) and lowest pH (average: 4.39) compared to the harvests in mid‐September and beginning of October. Mass losses during ensiling (as high as 7.6% of fresh matter for the M. sinensis genotype Sin55) were compensated for by a higher substrate‐specific methane yield (up to 353 Nml CH4 (g oDM)?1) in ensiled miscanthus. This resulted in non‐significantly different methane hectare yields for non‐ensiled (average: 4.635 Nm3 CH4/ha) and ensiled miscanthus biomass (4.803 Nm3 CH4/ha). A comparison of the four genotypes suggests that Miscanthus x giganteus is the most suitable genotype for ensiling as it had the best silage quality.  相似文献   

2.
To diversify energy crop production and improve its biodiversity and sustainability, there is currently a search for alternative energy crops. Many of the newly arising alternatives are perennial species such as the C4 grass miscanthus. The assessment of reliable data is a prerequisite for understanding the performance of these crops and developing corresponding management systems. However there is great uncertainty concerning research methodology for these crops. When data are collected from small plots of perennial crops, such as miscanthus or short rotation coppice plantations, a larger variability is expected than for cereals. A square meter cut, corresponding to harvest practice in cereals, is not sufficient for perennial C4 grasses and is not recommended for these species. The aim of this research was to identify an adequate size of sampling area for miscanthus to estimate the true biomass yield or quality. For this purpose, whole plots of 10‐ and 14‐year old miscanthus stands were divided into smaller subplots. These were used to calculate variances for various sizes of simulated plots. The variances for all traits in the experiments were rather high when the sampling area was smaller than 2 m². A cutting regime of more than 5.6 m² would be advisable, but an area of 3 m² is sufficient to eliminate approximately 90% of the variances and is therefore an adequate size of sampling area.  相似文献   

3.
Semi-natural lowland and mountain mesic meadows are grasslands rich in species, and their conservation status depends on treatments such as mowing or grazing livestock. In many countries, the condition of grasslands is deteriorating because of their inappropriate use or abandonment. This study aimed to determine the effects of the species composition of plant communities and functional plant groups on the methane yield from biomass harvested from mesic grasslands in the Sudetes Mountains. Biogas potential analysis was performed based on biomass samples collected from Poland and the Czech Republic. The biogas potential was determined in 40 day-long batch anaerobic digestion tests. The average methane yield obtained from the biomass was 246 ± 16 NL CH4 kg?1 VS, whereas the methane yield per hectare was 870 ± 203 m3 CH4 ha?1. Plant communities comprising different dominant species had no effect on the methane yield but affected the methane yield per hectare. Additionally, the species composition of grasslands with a higher percentage of forbs had lower biomass yield, resulting in lower methane yields per hectare. The continuity of the low-intensity management of mountain grassland, which can be provided by the utilization of their biomass for bioenergy production, sustains high biodiversity and ensures appropriate meadow conservation.  相似文献   

4.
The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5-9-fold increase in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production of bioenergy.  相似文献   

5.
The objective of this study is to summarize the effects of surfactants on anaerobic digestion (AD) of waste activated sludge (WAS). The increasing amount of WAS has caused serious environmental problems. Anaerobic digestion, as the main treatment for WAS containing three stages (i.e. hydrolysis, acidogenesis, and methanogenesis), has been widely investigated. Surfactant addition has been demonstrated to improve the efficiency of AD. Surfactant, as an amphipathic substance, can enhance the efficiency of hydrolysis by separating large sludge and releasing the encapsulated hydrolase, providing more substance for subsequent acidogenesis. Afterwards, the short chain fatty acids (SCFAs), as the major product, have been produced. Previous investigations revealed that surfactant could affect the transformation of SCFA. They changed the types of acidification products by promoting changes in microbial activity and in the ratio of carbon to nitrogen (C/N), especially the ratio of acetic and propionic acid, which were applied for either the removal of nutrient or the production of polyhydroxyalkanoate (PHA). In addition, the activity of microorganisms can be affected by surfactant, which mainly leads to the activity changes of methanogens. Besides, the solubilization of surfactant will promote the solubility of contaminants in sludge, such as organic contaminants and heavy metals, by increasing the bioavailability or desorbing of the sludge.  相似文献   

6.
The potential of various biomasses for the production of green chemicals is currently one of the key topics in the field of the circular economy. Volatile fatty acids (VFAs) are intermediates in the methane formation pathway of anaerobic digestion and they can be produced in similar reactors as biogas to increase the productivity of a digestion plant, as VFAs have more varying end uses compared to biogas and methane. In this study, the aim was to assess the biogas and VFA production of food waste (FW) and cow slurry (CS) using the anaerobic biogas plant inoculum treating the corresponding substrates. The biogas and VFA production of both biomasses were studied in identical batch scale laboratory conditions while the process performance was assessed with chemical and microbial analyses. As a result, FW and CS were shown to have different chemical performances and microbial dynamics in both VFA and biogas processes. FW as a substrate showed higher yields in both processes (435 ml CH4/g VSfed and 434 mg VFA/g VSfed) due to its characteristics (pH, organic composition, microbial communities), and thus, the vast volume of CS makes it also a relevant substrate for VFA and biogas production. In this study, VFA profiles were highly dependent on the substrate and inoculum characteristics, while orders Clostridiales and Lactobacillales were connected with high VFA and butyric acid production with FW as a substrate. In conclusion, anaerobic digestion supports the implementation of the waste management hierarchy as it enables the production of renewable green chemicals from both urban and rural waste materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号