首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stomatal size and density were measured from graminoid cuticular fragments extracted from dated sediments in two tropical-montane crater lakes on Mount Kenya. The sediments had been dated in other studies and spanned 1500–37 000 calibrated years BP. Changes in the mean size and density of the graminoid stomata were found. Using a coarse signal analysis the two lakes gave fairly similar results, although there was some divergence at the start and end of the time period analyzed. There is some correspondence between the atmospheric CO2 concentration and graminoid stomatal density during the transition from the LGM to the start of the Holocene, where stomatal density decreased while CO2 concentrations increased. All the changes observed may have been plastic responses within existing species at the site or competitive replacements of grass floras. We argue that higher stomatal density may have been a response to falling CO2 levels during the last glaciation, accompanying the replacement of a C3 flora by C4 species. The stomatal size changes exhibited over this time period may have adapted plants to changes in soil water availability. That stomatal morphology changes in a sample flora (not a single taxon) over millennia is a novel finding, and one that may have implications for paleoecological interpretation and the prediction of grass behavior in the future.  相似文献   

2.
Stomata, composed of two guard cells, are the gates whose controlled movement allows the plant to balance the demand for CO2 for photosynthesis with the loss of water through transpiration. Increased guard‐cell osmolarity leads to the opening of the stomata and decreased osmolarity causes the stomata to close. The role of sugars in the regulation of stomata is not yet clear. In this study, we examined the role of hexokinase (HXK), a sugar‐phosphorylating enzyme involved in sugar‐sensing, in guard cells and its effect on stomatal aperture. We show here that increased expression of HXK in guard cells accelerates stomatal closure. We further show that this closure is induced by sugar and is mediated by abscisic acid. These findings support the existence of a feedback‐inhibition mechanism that is mediated by a product of photosynthesis, namely sucrose. When the rate of sucrose production exceeds the rate at which sucrose is loaded into the phloem, the surplus sucrose is carried toward the stomata by the transpiration stream and stimulates stomatal closure via HXK, thereby preventing the loss of precious water.  相似文献   

3.
Summary Using fluorescent probes and confocal laser scanning microscopy we have examined the organisation of the microtubule and actin components of the cytoskeleton in kidney-shaped guard cells of six species of Selaginella. The stomata of Selaginella exhibit novel cytoskeletal arrangements, and at different developmental stages, display similarities in microtubule organisation to the two major types of stomata: grass (dumbbell-shaped) and non-grass (kidney-shaped). Initially, cortical microtubules and F-actin radiate from the stomatal pore and extend across the external and internal periclinal cell surfaces of the guard cells. As the stomata differentiate, the cytoskeleton reorients only along the internal periclinal walls. Reorganisation is synchronous in guard cells of the same stoma. Microtubules on the inner periclinal walls of the guard cells now emanate from areas of the ventral wall on either side of the pore and form concentric circles around the pore. The rearrangement of F-actin is similar to that of microtubules although F-actin is less well organised. Radial arrays of both microtubules and F-actin are maintained adjacent to the external surfaces. Subsequently, in two of the six species of Selaginella examined, microtubules on both the internal and external walls become oriented longitudinally and exhibit no association with the ventral wall. In the other four species, microtubules adjacent to the internal walls revert to the initial radial alignment. These findings may have implications in the development and evolution of the stomatal complex.Abbreviations GC guard cell - MT microtubule  相似文献   

4.
In the leaves of rice (Oryza sativa), stomatal initials arose from two asymmetric cell divisions and a symmetric division. Guard mother cells (GMCs) and long cells in stomatal files (LCSs) were formed through the first asymmetric division of the precursor cell of GMCs. Subsidiary cells (SCs) were produced by the second asymmetric division of subsidiary mother cells or LCSs. Following SC formation, GMCs divided once symmetrically to generate guard cells and then differentiated terminally to form mature stomata. The developmental patterns of long cells, prickle hairs and short cells (phellem cells and silica cells) were also examined. Interestingly, we found that the different developmental stages of stomata and epidermal cells occurred in the similar location of immature leaves of the same phyllotaxis. In addition, two spacing patterns (“one stoma, one long cell” and “one short cell row”) probably exist in rice leaves.  相似文献   

5.
Given that stomatal movement is ultimately a mechanical process and that stomata are morphologically and mechanically diverse, we explored the influence of stomatal mechanical diversity on leaf gas exchange and considered some of the constraints. Mechanical measurements were conducted on the guard cells of four different species exhibiting different stomatal morphologies, including three variants on the classical "kidney" form and one "dumb-bell" type; this information, together with gas-exchange measurements, was used to model and compare their respective operational characteristics. Based on evidence from scanning electron microscope images of cryo-sectioned leaves that were sampled under full sun and high humidity and from pressure probe measurements of the stomatal aperture versus guard cell turgor relationship at maximum and zero epidermal turgor, it was concluded that maximum stomatal apertures (and maximum leaf diffusive conductance) could not be obtained in at least one of the species (the grass Triticum aestivum) without a substantial reduction in subsidiary cell osmotic (and hence turgor) pressure during stomatal opening to overcome the large mechanical advantage of subsidiary cells. A mechanism for this is proposed, with a corollary being greatly accelerated stomatal opening and closure. Gas-exchange measurements on T. aestivum revealed the capability of very rapid stomatal movements, which may be explained by the unique morphology and mechanics of its dumb-bell-shaped stomata coupled with "see-sawing" of osmotic and turgor pressure between guard and subsidiary cells during stomatal opening or closure. Such properties might underlie the success of grasses.  相似文献   

6.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   

7.
Stomata mediate gas exchange between the inter‐cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll‐deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll‐deficient. Interestingly, approximately 45% of stomata had an unusual, previously not‐described, morphology of thin‐shaped chlorophyll‐less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole‐leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable with wild‐type plants. Time‐resolved intact leaf gas‐exchange analyses showed a reduction in stomatal conductance and CO2‐assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney‐shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin‐shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll‐less stomata cause a ‘deflated’ thin‐shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.  相似文献   

8.
保卫细胞的ABA信号转导   总被引:1,自引:0,他引:1  
植物激素脱落酸(ABA)调节植物体多种生理过程,尤其在一些逆境条件下,植物体中ABA大量合成,诱导气孔关闭,从而有效地调控植物体内的水分平衡.尽管人们对ABA诱导气孔关闭作用已得到共识,但有关信号转导的细节还很不清楚.该文简要介绍了研究气孔保卫细胞信号转导途径的相关技术以及与ABA信号转导直接相关的ABA受体、第二信使、蛋白质磷酸化和离子通道调节等方面的最新妍究进展.并在前人研究工作的基础上,勾画出气孔保卫细胞ABA、H2O2的信号转导模式图.  相似文献   

9.
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney‐shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin‐rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening.  相似文献   

10.
In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P. viticola wilted more rapidly than healthy ones when submitted to water starvation. Here, complementary approaches measuring stomatal conductance and infrared thermographic and microscopic observations were used to investigate stomatal opening/closure in response to infection. In infected leaves, stomata remained open in darkness and during water stress, leading to increased transpiration. This deregulation was restricted to the colonized area, was not systemic and occurred before the appearance of symptoms. Cytological observations indicated that stomatal lock-open was not related to mechanical forces resulting from the presence of the pathogen in the substomatal cavity. In contrast to healthy leaves, stomatal closure in excised infected leaves could not be induced by a water deficit or abscisic acid (ABA) treatment. However, ABA induced stomatal closure in epidermal peels from infected leaves, indicating that guard cells remained functional. These data indicate that the oomycete deregulates guard cell functioning, causing significant water losses. This effect could be attributed to a nonsystemic compound, produced by the oomycete or by the infected plant, which inhibits stomatal closure or induces stomatal opening; or a reduction of the back-pressure exerted by surrounding epidermal cells. Both hypotheses are under investigation.  相似文献   

11.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

12.
《植物生态学报》2014,38(8):868
气孔是植物与大气环境进行气体交换的重要通道, 在调控植物碳水平衡方面发挥着重要作用。为探讨生境和植物类型对气孔形态特征的影响以及气孔对光强变化的响应格局在不同植物间和不同生境条件下的变异, 选取开阔生境和林下生境的5种蕨类植物和4种被子植物, 测定了它们的气孔形态特征和气孔导度对光强变化的响应。此外, 还收集了8篇文献中开阔和林下生境的45种蕨类植物和70种被子植物的气孔密度和气孔长度数据, 以增大样本量从而更好地探讨不同生境条件下蕨类和被子植物气孔密度及长度的变异格局, 并通过分析生境和植物类型对气孔形态特征的影响来推测生境和植物类型对气孔响应行为的可能影响。实验结果表明, 与林下植物相比, 开阔环境下的植物气孔密度更大, 气孔长度更小, 气孔对光强降低的响应更敏感; 但植物类型对气孔形态特征的影响以及对气孔响应光强的敏感程度的影响均不显著。对文献数据的分析表明, 生境和植物类型对气孔形态特征均有显著影响。考虑到气孔响应快慢与气孔形态特征密切相关, 与蕨类植物相比, 被子植物小而密的气孔可能为其更快地响应环境变化提供了基础。研究表明生境和植物类型对气孔响应行为均有显著影响。  相似文献   

13.
气孔是植物与大气环境进行气体交换的重要通道, 在调控植物碳水平衡方面发挥着重要作用。为探讨生境和植物类型对气孔形态特征的影响以及气孔对光强变化的响应格局在不同植物间和不同生境条件下的变异, 选取开阔生境和林下生境的5种蕨类植物和4种被子植物, 测定了它们的气孔形态特征和气孔导度对光强变化的响应。此外, 还收集了8篇文献中开阔和林下生境的45种蕨类植物和70种被子植物的气孔密度和气孔长度数据, 以增大样本量从而更好地探讨不同生境条件下蕨类和被子植物气孔密度及长度的变异格局, 并通过分析生境和植物类型对气孔形态特征的影响来推测生境和植物类型对气孔响应行为的可能影响。实验结果表明, 与林下植物相比, 开阔环境下的植物气孔密度更大, 气孔长度更小, 气孔对光强降低的响应更敏感; 但植物类型对气孔形态特征的影响以及对气孔响应光强的敏感程度的影响均不显著。对文献数据的分析表明, 生境和植物类型对气孔形态特征均有显著影响。考虑到气孔响应快慢与气孔形态特征密切相关, 与蕨类植物相比, 被子植物小而密的气孔可能为其更快地响应环境变化提供了基础。研究表明生境和植物类型对气孔响应行为均有显著影响。  相似文献   

14.
15.
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid‐ and vapour‐phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we predict that plants grown under high VPD will modify the balance between veins and stomata to accommodate greater maximum transpiration. Thus, we examined the developmental responses of these traits to contrasting VPD in a woody angiosperm (Toona ciliata M. Roem.) and tested whether the relationship between them was altered. High VPD leaves were one‐third the size of low VPD leaves with only marginally greater vein and stomatal density. Transpirational homeostasis was thus maintained by reducing stomatal conductance. VPD acclimation changed leaf size by modifying cell number. Hence, plasticity in vein and stomatal density appears to be generated by plasticity in cell size rather than cell number. Thus, VPD affects cell number and leaf size without changing the relationship between liquid‐ and vapour‐phase conductances. This results in inefficient acclimation to VPD as stomata remain partially closed under high VPD.  相似文献   

16.
Yang M  Sack FD 《The Plant cell》1995,7(12):2227-2239
Stomata regulate gas exchange through the aerial plant epidermis by controlling the width of a pore bordered by two guard cells. Little is known about the genes that regulate stomatal development. We screened cotyledons from ethyl methanesulfonate-mutagenized seeds of Arabidopsis by light microscopy to identify mutants with altered stomatal morphology. Two mutants, designated too many mouths (tmm) and four lips (flp), were isolated with extra adjacent stomata. The tmm mutation results in stomatal clustering and increased precursor cell formation in cotyledons and a virtual absence of stomata in the inflorescence stem. The flp mutation results in many paired stomata and a small percentage of unpaired guard cells in cotyledons. The double mutant (tmm flp) exhibits aspects of both parental phenotypes. Both mutations appear to affect stomatal production more than patterning or differentiation. tmm regulates stomatal production by controlling the formation, and probably the activity, of the stomatal precursor cell.  相似文献   

17.
18.
This light and electron microscope study reveals considerable uniformity in hornwort stomata morphology and density in contrast to common spatial and developmental abnormalities in tracheophytes and mosses. Stomata arise from a median longitudinal division of sporophyte epidermal cells morphologically indistinguishable from their neighbours apart from the retention of a single chloroplast whilst those in the other epidermal cells fragment. Chloroplast division and side-by-side repositioning of the two daughter chloroplasts determines the division plane in the stomatal mother cell. The nascent guard cells contain giant, starch-filled chloroplasts which subsequently divide and, post aperture opening, regain their spherical shape. Accumulation of wall material over the guard cells and of wax rodlets lining the pores follows opening. While the majority of stomata are bilaterally symmetrical those lining the dehiscence furrows display dextral and sinistral asymmetry due to differential expansion of the adjacent epidermal cells.

The ubiquity of open stomata suggests that these never close with the maturational wall changes rendering movement extremely unlikely. These structural limitations, a liquid-filled stage in the ontogeny of the intercellular spaces, and spores already at the tetrad stage when stomata open, suggest that their primary role is facilitating sporophyte desiccation leading to dehiscence and spore dispersal rather than gaseous exchange. Stomata ontogeny and very low densities, like those in Devonian fossils, suggest either ancient origins at a time when atmospheric carbon dioxide levels were much greater than today or a function other than gaseous exchange regulation. We found no evidence for stomatal homology between hornworts, mosses and tracheophytes.  相似文献   


19.
盾叶秋海棠叶表皮气孔簇的发育及分布格局   总被引:4,自引:0,他引:4  
气孔是植物控制气体交换和调节水分散失的门户。大部分高等植物气孔的分布格局是相邻气孔之间被一至多个表皮细胞所间隔。而在有限分布的几个科属的植物种中发现气孔成簇分布的现象 ,即由 2至多个紧密相邻的气孔器组成相对独立的单元 ,称为气孔簇 (stomatalcluster)。以中国原产的盾叶秋海棠 (BegoniapeltatifoliaLi)为研究对象 ,探讨了叶表皮气孔簇的发育机制及其分布格局。结果表明 :气孔发育初期 ,气孔拟分生组织的成簇 (相邻紧密 )排列可能是气孔簇形成的主要机制 ;气孔副卫细胞恢复分裂形成的卫星拟分生组织也对气孔簇的形成起一定的作用。把气孔簇和单个气孔视为一个气孔单元发现 ,盾叶秋海棠气孔单元密度 (单位面积中气孔单元数 )和气孔单元大小 (气孔单元所包含气孔数 )在叶片上呈有规律的分布 :前者由叶片中部向叶尖、叶缘逐圈增多 ,而后者逐圈减少。对这种分布格局的成因进行了讨论  相似文献   

20.
Gao XQ  Chen J  Wei PC  Ren F  Chen J  Wang XC 《Plant cell reports》2008,27(10):1655-1665
Actin filaments in guard cells and their dynamics function in regulating stomatal movement. In this study, the array and distribution of actin filaments in guard cells during stomatal movement were studied with two vital labeling, microinjection of alexa-phalloidin in Vicia faba and expression of GFP-mTn in tobacco. We found that the random array of actin filaments in the most of the closed stomata changed to a ring-like array after stomatal open. And actin filaments, which were throughout the cytoplasm of guard cells of closed stomata (even distribution), were mainly found in the cortical cytoplasm in the case of open stomata (cortical distribution). These results revealed that the random array and even distribution of actin filaments in guard cells may be required for keeping the closed stomata; similarly, the ring-like array and cortical distribution of actin filaments function in sustaining open stomata. Furthermore, we found that actin depolymerization, the trait of moving stomata, facilitates the transformation of actin array and distribution with stomatal movement. So, the depolymerization of actin filaments was favorable for the changes of actin array and distribution in guard cells and thus facilitated stomatal movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号