首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Centromeres are key chromosomal landmarks important for chromosome segregation and are characterized by distinct chromatin features. The centromeric histone H3 variant, referred to as CENP-A or CenH3CENP-A in mammals, has emerged as a key determinant for centromeric structure, function and epigenetic inheritance. To regulate the correct incorporation and maintenance of histones at this locus, the cell employs an intricate network of molecular players, among which histone chaperones and chromatin remodelling factors have been identified over the past years. The mammalian centromere-specific chaperone HJURP represents an interesting paradigm to understand the functioning of this network. This review highlights and discusses the latest findings on centromeric histone H3 variant deposition and regulation to delineate the current view on centromere establishment, maintenance and propagation throughout the cell cycle. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.  相似文献   

2.
Histones are abundant cellular proteins but, if not incorporated into chromatin, they are usually bound by histone chaperones. Here, we identify Arabidopsis NASP as a chaperone for histones H3.1 and H3.3. NASP interacts in vitro with monomeric H3.1 and H3.3 as well as with histone H3.1–H4 and H3.3–H4 dimers. However, NASP does not bind to monomeric H4. NASP shifts the equilibrium between histone dimers and tetramers towards tetramers but does not interact with tetramers in vitro. Arabidopsis NASP promotes [H3–H4]2 tetrasome formation, possibly by providing preassembled histone tetramers. However, NASP does not promote disassembly of in vitro preassembled tetrasomes. In contrast to its mammalian homolog, Arabidopsis NASP is a predominantly nuclear protein. In vivo, NASP binds mainly monomeric H3.1 and H3.3. Pulldown experiments indicated that NASP may also interact with the histone chaperone MSI1 and a HSC70 heat shock protein.  相似文献   

3.
4.
5.
Chromatin organization is essential for coordinated gene expression, genome stability, and inheritance of epigenetic information. The main components involved in chromatin assembly are specific complexes such as Chromatin Assembly Factor 1 (CAF‐1) and Histone Regulator (HIR), which deposit histones in a DNA synthesis‐dependent or ‐independent manner, respectively. Here, we characterize the role of the plant orthologs Histone Regulator A (HIRA), Ubinuclein (UBN) and Calcineurin Binding protein 1 (CABIN1), which constitute the HIR complex. Arabidopsis loss‐of‐function mutants for the various subunits of the complex are viable, but hira mutants show reduced fertility. We show that loss of HIRA reduces extractable histone H3 protein levels and decreases nucleosome occupancy at both actively transcribed genes and heterochromatic regions. Concomitantly, HIRA contributes to maintenance of silencing of pericentromeric repeats and certain transposons. A genetic analysis based on crosses between mutants deficient in subunits of the CAF‐1 and HIR complexes showed that simultaneous loss of both the CAF‐1 and HIR histone H3 chaperone complexes severely affects plant survival, growth and reproductive development. Our results suggest that HIRA partially rescues impaired histone deposition in fas mutants to preserve nucleosome occupancy, implying plasticity in histone variant interaction and deposition.  相似文献   

6.
The centromeric histone H3 variant (CenH3) serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. The Dictyostelium H3-like variant H3v1 was identified as the CenH3 ortholog. Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins and a histone fold domain at its C-terminus. Within the histone fold, α-helix 2 (α2) and an extended loop 1 (L1) have been shown to be required for targeting CenH3 to centromeres. Compared to other known and putative CenH3 histones, Dictyostelium CenH3 has a shorter L1, suggesting that the extension is not an obligatory feature. Through ChIP analysis and fluorescence microscopy of live and fixed cells, we provide here the first survey of centromere structure in amoebozoa. The six telocentric centromeres were found to mostly consist of all the DIRS-1 elements and to associate with H3K9me3. During interphase, the centromeres remain attached to the centrosome forming a single CenH3-containing cluster. Loading of Dictyostelium CenH3 onto centromeres occurs at the G2/prophase transition, in contrast to the anaphase/telophase loading of CenH3 observed in metazoans. This suggests that loading during G2/prophase is the ancestral eukaryotic mechanism and that anaphase/telophase loading of CenH3 has evolved more recently after the amoebozoa diverged from the animal linage.  相似文献   

7.
Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical “beads-on-a-string” appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.  相似文献   

8.
Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical “beads-on-a-string” appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.  相似文献   

9.
Centromeres are chromosomal sites of microtubule binding that ensure correct mitotic segregation of chromosomes to daughter cells. This process is mediated by a special centromere-specific histone H3 variant (CenH3), which packages centromeric chromatin and epigenetically maintains the centromere at a distinct chromosomal location. However, CenH3 is present at low abundance relative to canonical histones, presenting a challenge for the isolation and characterization of the chaperone machinery that assembles CenH3 into nucleosomes at centromeres. To address this challenge, we used controlled overexpression of Drosophila CenH3 (CID) and an efficient biochemical purification strategy offered by in vivo biotinylation of CID to successfully purify and characterize the soluble CID nucleosome assembly complex. It consists of a singlechaperone protein, RbAp48, complexed with CID and histone H4. RbAp48 is also found in protein complexes that assemble canonical histone H3 and replacement histone H3.3. Here, we highlight the benefits of our improved biotin-mediated purification method, and address the question of how the simple CID/H4-RbAp48 chaperone complex can mediate nucleosome assembly specifically at centromeres.  相似文献   

10.
The molecular architecture of centromere-specific nucleosomes containing histone variant CenH3 is controversial. We have biochemically reconstituted two distinct populations of nucleosomes containing Saccharomyces cerevisiae CenH3 (Cse4). Reconstitution of octameric nucleosomes containing histones Cse4/H4/H2A/H2B is robust on noncentromere DNA, but inefficient on AT-rich centromere DNA. However, nonhistone Scm3, which is required for Cse4 deposition in?vivo, facilitates in?vitro reconstitution of Cse4/H4/Scm3 complexes on AT-rich centromere sequences. Scm3 has a nonspecific DNA binding domain that shows preference for AT-rich DNA and a histone chaperone domain that promotes specific loading of Cse4/H4. In live cells, Scm3-GFP is enriched at centromeres in all cell cycle phases. Chromatin immunoprecipitation confirms that Scm3 occupies centromere DNA throughout the cell cycle, even when Cse4 and H4 are temporarily dislodged in S phase. These findings suggest a model in which centromere-bound Scm3 aids recruitment of Cse4/H4 to assemble and maintain an H2A/H2B-deficient centromeric nucleosome.  相似文献   

11.

Background

Centromere identity is determined epigenetically by deposition of CenH3, a centromere-specific histone H3 variant that dictates kinetochore assembly. The molecular basis of the contribution of CenH3 to centromere/kinetochore functions is, however, incompletely understood, as its interactions with the rest of centromere/kinetochore components remain largely uncharacterised at the molecular/structural level.

Principal Findings

Here, we report on the contribution of Drosophila CenH3CID to recruitment of BubR1, a conserved kinetochore protein that is a core component of the spindle attachment checkpoint (SAC). This interaction is mediated by the N-terminal domain of CenH3CID (NCenH3CID), as tethering NCenH3CID to an ectopic reporter construct results in BubR1 recruitment and BubR1-dependent silencing of the reporter gene. Here, we also show that this interaction depends on a short arginine (R)-rich motif and that, most remarkably, it appears to be evolutionarily conserved, as tethering constructs carrying the highly divergent NCenH3 of budding yeast and human also induce silencing of the reporter. Interestingly, though NCenH3 shows an exceedingly low degree of conservation, the presence of R-rich motives is a common feature of NCenH3 from distant species. Finally, our results also indicate that two other conserved sequence motives within NCenH3CID might also be involved in interactions with kinetochore components.

Conclusions

These results unveil an unexpected contribution of the hypervariable N-domain of CenH3 to recruitment of kinetochore components, identifying simple R-rich motives within it as evolutionary conserved structural determinants involved in BubR1 recruitment.  相似文献   

12.
Creating true‐breeding lines is a critical step in plant breeding. Novel, completely homozygous true‐breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere‐specific histone 3 variant (CENH3), including chimeric proteins, expression of non‐native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild‐type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS‐inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9‐mediated in‐frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild‐type pollen. Both of these technologies, CRISPR mutagenesis and EMS mutagenesis, represent non‐transgenic approaches to the generation of haploid inducers.  相似文献   

13.
14.
15.
The epigenetic mark of the centromere is thought to be a unique centromeric nucleosome that contains the histone H3 variant, centromere protein‐A (CENP‐A). The deposition of new centromeric nucleosomes requires the CENP‐A‐specific chromatin assembly factor HJURP (Holliday junction recognition protein). Crystallographic and biochemical data demonstrate that the Scm3‐like domain of HJURP binds a single CENP‐A–histone H4 heterodimer. However, several lines of evidence suggest that HJURP forms an octameric CENP‐A nucleosome. How an octameric CENP‐A nucleosome forms from individual CENP‐A/histone H4 heterodimers is unknown. Here, we show that HJURP forms a homodimer through its C‐terminal domain that includes the second HJURP_C domain. HJURP exists as a dimer in the soluble preassembly complex and at chromatin when new CENP‐A is deposited. Dimerization of HJURP is essential for the deposition of new CENP‐A nucleosomes. The recruitment of HJURP to centromeres occurs independent of dimerization and CENP‐A binding. These data provide a mechanism whereby the CENP‐A pre‐nucleosomal complex achieves assembly of the octameric CENP‐A nucleosome through the dimerization of the CENP‐A chaperone HJURP.  相似文献   

16.
17.
18.
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.  相似文献   

19.

Background  

NASP (Nuclear Autoantigenic Sperm Protein) is a histone chaperone that is present in all dividing cells. NASP has two splice variants: tNASP and sNASP. Only cancer, germ, transformed, and embryonic cells have a high level of expression of the tNASP splice variant. We examined the consequences of tNASP depletion for prostate cancer PC-3 cells.  相似文献   

20.

Background

Our previous works have demonstrated that Helicobacter pylori (Hp) infection can alter histone H3 serine 10 phosphorylation status in gastric epithelial cells. However, whether Helicobacter pylori‐induced histone H3 serine 10 phosphorylation participates in gastric carcinogenesis is unknown. We investigate the expression of histone H3 serine 10 phosphorylation in various stages of gastric disease and explore its clinical implication.

Materials and Methods

Stomach biopsy samples from 129 patients were collected and stained with histone H3 serine 10 phosphorylation, Ki67, and Helicobacter pylori by immunohistochemistry staining, expressed as labeling index. They were categorized into nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, low‐grade intraepithelial neoplasia, high‐grade intraepithelial neoplasia, and intestinal‐type gastric cancer groups. Helicobacter pylori infection was determined by either 13C‐urea breath test or immunohistochemistry staining.

Results

In Helicobacter pylori‐negative patients, labeling index of histone H3 serine 10 phosphorylation was gradually increased in nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia groups, peaked at low‐grade intraepithelial neoplasia, and declined in high‐grade intraepithelial neoplasia and gastric cancer groups. In Helicobacter pylori‐infected patients, labeling index of histone H3 serine 10 phosphorylation followed the similar pattern as above, with increased expression over the corresponding Helicobacter pylori‐negative controls except in nonatrophic gastritis patient whose labeling index was decreased when compared with Helicobacter pylori‐negative control. Labeling index of Ki67 in Helicobacter pylori‐negative groups was higher in gastric cancer than chronic atrophic gastritis and low‐grade intraepithelial neoplasia groups, and higher in intestinal metaplasia group compared with chronic atrophic gastritis group. In Helicobacter pylori‐positive groups, Ki67 labeling index was increased stepwise from nonatrophic gastritis to gastric cancer except slightly decrease in chronic atrophic gastritis group. In addition, we noted that histone H3 serine 10 phosphorylation staining is accompanied with its location changes from gastric gland bottom expanded to whole gland as disease stage progress.

Conclusions

These results indicate that stepwise gastric carcinogenesis is associated with altered histone H3 serine 10 phosphorylation, Helicobacter pylori infection enhances histone H3 serine 10 phosphorylation expression in these processes; it is also accompanied with histone H3 serine 10 phosphorylation location change from gland bottom staining expand to whole gland expression. The results suggest that epigenetic dysregulation may play important roles in Helicobacter pylori‐induced gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号