首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle‐specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle‐specific promoter could be used to increase seed size, leading to grain yield improvement in rice.  相似文献   

2.
3.
Grain size and weight are directly associated with grain yield in crops. However, the molecular mechanisms that set final grain size and weight remain largely unknown. Here, we characterize two large grain mutants, large grain8‐1 (large8‐1) and large grain8‐2 (large8‐2). LARGE8 encodes the mitogen‐activated protein kinase phosphatase1 (OsMKP1). Loss of function mutations in OsMKP1 results in large grains, while overexpression of OsMKP1 leads to small grains. OsMKP1 determines grain size by restricting cell proliferation in grain hulls. OsMKP1 directly interacts with and deactivates the mitogen‐activated protein kinase 6 (OsMAPK6). Taken together, we identify OsMKP1 as a crucial factor that influences grain size by deactivating OsMAPK6, indicating that the reversible phosphorylation of OsMAPK6 plays important roles in determining grain size in rice.  相似文献   

4.
Grain shape and size both determine grain weight and therefore crop yield. However, the molecular mechanisms controlling grain shape and size are still largely unknown. Here, we isolated a rice mutant, beak-shaped grain1 (bsg1), which produced beak-shaped grains of decreased width, thickness and weight with a loosely interlocked lemma and palea that were unable to close tightly. Starch granules were also irregularly packaged in the bsg1 grains. Consistent with the lemma and palea shapes, the outer parenchyma cell layers of these bsg1 tissues developed fewer cells with decreased size. Map-based cloning revealed that BSG1 encoded a DUF640 domain protein, TRIANGULAR HULL 1, of unknown function. Quantitative PCR and GUS fusion reporter assays showed that BSG1 was expressed mainly in the young panicle and elongating stem. The BSG1 mutation affected the expression of genes potentially involved in the cell cycle and GW2, an important regulator of grain size in rice. Our results suggest that BSG1 determines grain shape and size probably by modifying cell division and expansion in the grain hull.  相似文献   

5.
Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1‐1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain‐like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1‐1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP–WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain‐like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice.  相似文献   

6.
Common wild rice (Oryza rufipogon Griff.) is an important genetic reservoir for rice improvement. We investigated a quantitative trait locus (QTL), qGP5‐1, which is related to plant height, leaf size and panicle architecture, using a set of introgression lines of O. rufipogon in the background of the Indica cultivar Guichao2 (Oryza sativa L.). We cloned and characterized qGP5‐1 and confirmed that the newly identified gene OsEBS (enhancing biomass and spikelet number) increased plant height, leaf size and spikelet number per panicle, leading to an increase in total grain yield per plant. Our results showed that the increased size of vegetative organs in OsEBS‐expressed plants was enormously caused by increasing cell number. Sequence alignment showed that OsEBS protein contains a region with high similarity to the N‐terminal conserved ATPase domain of Hsp70, but it lacks the C‐terminal regions of the peptide‐binding domain and the C‐terminal lid. More results indicated that OsEBS gene did not have typical characteristics of Hsp70 in this study. Furthermore, Arabidopsis (Arabidopsis thaliana) transformed with OsEBS showed a similar phenotype to OsEBS‐transgenic rice, indicating a conserved function of OsEBS among plant species. Together, we report the cloning and characterization of OsEBS, a new QTL that controls rice biomass and spikelet number, through map‐based cloning, and it may have utility in improving grain yield in rice.  相似文献   

7.
Grain weight is the most important component of rice yield and is mainly determined by grain size, which is generally controlled by quantitative trait loci (QTLs). Although numerous QTLs that regulate grain weight have been identified, the genetic network that controls grain size remains unclear. Herein, we report the cloning and functional analysis of a dominant QTL, grain length and width 2 (GLW2), which positively regulates grain weight by simultaneously increasing grain length and width. The GLW2 locus encodes OsGRF4 (growth‐regulating factor 4) and is regulated by the microRNA miR396c in vivo. The mutation in OsGRF4 perturbs the OsmiR396 target regulation of OsGRF4, generating a larger grain size and enhanced grain yield. We also demonstrate that OsGIF1 (GRF‐interacting factors 1) directly interacts with OsGRF4, and increasing its expression improves grain size. Our results suggest that the miR396c‐OsGRF4‐OsGIF1 regulatory module plays an important role in grain size determination and holds implications for rice yield improvement.  相似文献   

8.
Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over‐expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole‐3‐acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker‐assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high‐yielding rice varieties.  相似文献   

9.
10.
11.
12.
13.
Grain size traits are critical agronomic traits which directly determine grain yield, but the genetic bases of these traits are still not well understood. In this study, a total of 154 chromosome segment substitution lines (CSSLs) population derived from a cross between a japonica variety Koshihikari and an indica variety Nona Bokra was used to investigate grain length (GL), grain width (GW), length-width ratio (LWR), grain perimeter (GP), grain area (GA), and thousand grain weight (TGW) under four environments. QTL mapping analysis of six grain size traits was performed by QTL IciMapping 4.2 with an inclusive composite interval mapping (ICIM) model. A total of 64 QTLs were identified for these traits, which mapped to chromosomes 1, 2, 3, 4, 6, 7, 8, 10, 11, and 12 and accounted for 1.6%–27.1% of the total phenotypic variations. Among these QTLs, thirty-six loci were novel and seven QTLs were identified under four environments. One locus containing the known grain size gene, qGL3/GL3.1/OsPPKL1, also have been found. Moreover, five pairs of digenic epistatic interactions were identified except for GL and GP. These findings will facilitate fine mapping of the candidate gene and QTL pyramiding to genetically improve grain yield in rice.  相似文献   

14.
Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier‐like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed‐setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) ‐localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin‐related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits.  相似文献   

15.
Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.  相似文献   

16.
粳稻穗角与谷粒性状的相关性及谷粒性状遗传分析   总被引:1,自引:0,他引:1  
粳稻穗角小的品种产量高而品质差。谷粒性状与产量和品质都有关联。为培育产量与品质相协调的品种提供相关遗传信息, 测定了粳稻直立穗品种丙8979和弯曲穗品种C堡及其重组自交系349个株系的穗角和7个谷粒性状, 分析了穗角与谷粒性状之间的相关性, 并运用主基因+多基因混合遗传模型, 对7个谷粒性状进行了遗传分析。结果表明, 穗角与粒厚、长厚比和宽厚比均无显著相关, 而与千粒重、粒长、粒宽和长宽比均呈极显著正相关。7个谷粒性状均受2对主基因+多基因控制, 2对主基因的作用方式因性状而异。千粒重、粒长、长厚比和宽厚比4个性状以主基因遗传为主; 粒宽、粒厚和长宽比3个性状以多基因遗传为主。  相似文献   

17.
18.
Grain size and weight are important components of a suite of yield‐related traits in crops. Here, we showed that the CRISPR‐Cas9 gene editing of TaGW7, a homolog of rice OsGW7 encoding a TONNEAU1‐recruiting motif (TRM) protein, affects grain shape and weight in allohexaploid wheat. By editing the TaGW7 homoeologs in the B and D genomes, we showed that mutations in either of the two or both genomes increased the grain width and weight but reduced the grain length. The effect sizes of mutations in the TaGW7 gene homoeologs coincided with the relative levels of their expression in the B and D genomes. The effects of gene editing on grain morphology and weight traits were dosage dependent with the double‐copy mutant showing larger effect than the respective single copy mutants. The TaGW7‐centered gene co‐expression network indicated that this gene is involved in the pathways regulating cell division and organ growth, also confirmed by the cellular co‐localization of TaGW7 with α‐ and β‐tubulin proteins, the building blocks of microtubule arrays. The analyses of exome capture data in tetraploid domesticated and wild emmer, and hexaploid wheat revealed the loss of diversity around TaGW7‐associated with domestication selection, suggesting that TaGW7 is likely to play an important role in the evolution of yield component traits in wheat. Our study showed how integrating CRISPR‐Cas9 system with cross‐species comparison can help to uncover the function of a gene fixed in wheat for allelic variants targeted by domestication selection and select targets for engineering new gene variants for crop improvement.  相似文献   

19.
For grain crops such as rice (Oryza sativa), grain size substantially affects yield. The histone acetyltransferase GRAIN WEIGHT 6a (GW6a) determines grain size and yield in rice. However, the gene regulatory network underlying GW6a-mediated regulation of grain size has remained elusive. In this study, we show that GW6a interacts with HOMOLOG OF DA1 ON RICE CHROMOSOME 3 (HDR3), a ubiquitin-interacting motif-containing ubiquitin receptor. Transgenic rice plants overexpressing HDR3 produced larger grains, whereas HDR3 knockout lines produce smaller grains compared to the control. Cytological data suggest that HDR3 modulates grain size in a similar manner to GW6a, by altering cell proliferation in spikelet hulls. Mechanistically, HDR3 physically interacts with and stabilizes GW6a in an ubiquitin-dependent manner, delaying protein degradation by the 26S proteasome. The delay in GW6a degradation results in dramatic enhancement of the local acetylation of H3 and H4 histones. Furthermore, RNA sequencing analysis and chromatin immunoprecipitation assays reveal that HDR3 and GW6a bind to the promoters of and modulate a common set of downstream genes. In addition, genetic analysis demonstrates that HDR3 functions in the same genetic pathway as GW6a to regulate the grain size. Therefore, we identified the grain size regulatory module HDR3–GW6a as a potential target for crop yield improvement.

A ubiquitin receptor ubiquitylates and stabilizes a histone acetyltransferase; this module regulates downstream gene expression, altering rice grain size by modulating cell proliferation.  相似文献   

20.
水稻产量和稻米品质的提高是水稻研究的中心问题。水稻产量主要取决于单株穗数、每穗粒数和粒重;粒重作为一个非常重要的产量性状,由粒长、粒宽和粒厚所决定。影响粒重和粒形的基因多为数量性状基因,精细定位并克隆到的较少。本研究中,我们克隆到一个影响粒形的基因SL,超表达(SL-OE)转基因植株表现出粒长增加、粒宽减小、叶宽减小的表型;同时,SL-RNAi的转基因植株呈现出粒长缩短、叶宽增加的表型。颖壳表面细胞在超表达转基因植株中伸长,而在RNAi转基因植株中缩短。叶片横向细胞数目在转基因植株中发生变化,推测乩基因可能与细胞分裂相关。SL-OE转基因植株中G嗽因被明显上调,说明盟基因可能通过调节GW2的表达对水稻粒宽造成影响。另外,观基因影响稻米的品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号