首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Periodontitis is one of the main causes of tooth loss and has been confirmed as the sixth complication of diabetes. Metformin promotes the osteogenic differentiation of stem cells. Periodontal ligament stem cells (PDLSCs) are the best candidate stem cells for periodontal tissue regeneration. Herein, we aimed to identify the effects of metformin on the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro. PDLSCs were isolated by limiting dilution, and their characteristics were assessed by colony formation assay and flow cytometry. Cell counting and migration assays were used to investigate the effects of metformin on proliferation and migration. The osteogenic differentiation ability of PDLSCs was detected by alkaline phosphatase (ALP) activity and Alizarin Red S staining. Gene and protein levels of osteogenesis‐related markers were determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis, respectively. Metformin treatment at 10 μM did not affect PDLSC proliferation, while at 50 and 100 μM, metformin time‐dependently enhanced PDLSC proliferation and significantly increased cell numbers after 5 and 7 days of stimulation (P < 0.05). In addition, 50 μM metformin exhibited a maximal effect on migration, ALP activity, and mineral deposition (P < 0.05). Furthermore, 50 μM metformin significantly upregulated the gene expression levels of ALP, BSP, OPN, OCN, and Runx2 and the protein expression of ALP and Runx2 (P < 0.05). In summary, our study confirms that metformin facilitates the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro and could be used as a new strategy for periodontal tissue regeneration.  相似文献   

2.
3.
4.
Objectives: Enamel matrix proteins (EMPs) have been demonstrated to promote periodontal regeneration. However, effects of EMPs on human alveolar osteoblasts (hAOBs), up to now, have still been unclear. The purpose of this study was to investigate influence of EMPs on proliferation, differentiation and attachment of hAOBs in vitro. Materials and methods: EMPs were extracted using the acetic acid method, hAOBs were obtained and cultured in vitro. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of osteogenic markers and cell attachment were measured in the absence and in the presence of EMPs (50, 100 and 200 μg/ml). Results: EMPs increased proliferation of hAOBs; however, they inhibited ALP activity and mRNA expression of osteogenic markers (collagen I, ALP, runt‐related protein 2, osteocalcin, bone sialoprotein and osteopontin). Meanwhile, EMPs hindered hAOBs’ attachment. These effects occurred in EMPs concentration‐dependent manner. Conclusions: These results indicate that EMPs may inhibit osteoblastic differentiation and attachment to prevent ankylosis and allow other cell types to regenerate periodontal tissues.  相似文献   

5.
Objective: This study aimed to investigate the potential of enamel matrix proteins (EMPs) on promoting osteogenic differentiation of porcine bone marrow stromal cells (pBMSCs), as well as new bone formation capabilities, in a tissue‐engineered bone complex scaffold of EMPs, pBMSCs and porous calcium phosphate cement (CPC). Materials and methods: Effects of EMPs on pBMSCs in vitro was first determined by alkaline phosphatase (ALP) activity, von Kossa staining assay and mRNA expression of ALP, bone sialoprotein (BSP) and osteocalcin (OCN) genes. Next, an ectopic new bone formation test was performed in a nude mouse model with four groups: CPC scaffold alone; CPC scaffold + EMPs; CPC scaffold + pBMSCs; and CPC scaffold + EMPs + pBMSCs, for 2 or 4 weeks. Results: ALP activity, von Kossa assay and mRNA expressions of ALP, BSP and OCN genes were all significantly higher with 150 μg/ml EMP treatment in vitro. In nude mice, new bone formation was detected only in the CPC scaffold + EMPs + pBMSCs group at 2 weeks. At 4 weeks, in the tissue‐engineered construct there was significantly higher bone formation ability than other groups. Conclusions: EMPs promoted osteogenic differentiation of pBMSCs, and the tissue‐engineered complex of EMPs, pBMSCs and CPC scaffold may be a valuable alternative to be used in periodontal bone tissue engineering and regeneration.  相似文献   

6.
Chronic tendinopathy is a tendon disorder that is common in athletes and individuals whose tendons are subjected to repetitive strain injuries. The presence of ossification worsened the clinical manifestation of the disorder. The change of tendon loading due to mechanical overload, compression, or disuse have been implicated as the possible etiologies, but the pathological mechanisms of tendinopathy remain unclear. In this study, we demonstrated that ossification in tendon tissue might be due to the osteogenesis of tendon‐derived stem cells (TDSCs) induced by uniaxial mechanical tension (UMT) which mimics the mechanical loading in tendon. Rat TDSCs (rTDSCs) could be induced to differentiate into osteogenic lineage after treatment with 2% elongation UMT for 3 days as shown by the increased expression Runx2 mRNA and protein, Alpl mRNA, collagen type 1 alpha 1 (Col1a1) mRNA, ALP activity, and ALP cytochemical staining. RhoA, an osteogenesis regulator, was activated in rTDSCs upon UMT stimulation. Blockage of RhoA activity in rTDSCs by C3 toxin or ROCK activity, a downstream target of RhoA, by Y‐27632 inhibited UMT‐induced osteogenesis in rTDSCs. UMT up‐regulated the mRNA expression of Wnt5a but not the other non‐canonical Wnts. The inhibition of Wnt5a expression by siRNA abolished UMT‐induced Runx2 mRNA expression and RhoA activation in rTDSCs and the inhibition of Runx2 expression could be rescued by addition of LPA, a RhoA activator. In conclusion, our results showed that UMT induced osteogenic differentiation of rTDSCs via the Wnt5a‐RhoA pathway, which might contribute to ectopic ossification in tendon tissue due to mechanical loading. J. Cell. Biochem. 113: 3133–3142, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
本研究旨在探讨应用乙酰水杨酸(ASA)预处理的骨髓间充质干细胞(BMMSCs)治疗对大鼠牙周炎模型中的牙周骨修复的影响。通过建立大鼠牙周炎动物模型并使用ASA和BMMSCs联和治疗大鼠,本研究检测了体外BMMSCs的成骨分化、成脂分化、碱性磷酸酶(ALP)活性及成骨相关基因(ALP和OCN)的表达,并检测大鼠相关炎症因子(TNF-α,IL-17和IL-10)水平。结果显示,使用成骨培养基诱导BMMSCs后,可清晰地观察到BMMSCs的成骨分化和成脂分化。体外研究显示,60μg/mL的ASA显著促进了体外BMMSCs的增殖,提高了碱性磷酸酶(ALP)活性,促进了钙沉积和上调了成骨相关基因(ALP和OCN)的表达。此外,与未治疗的牙周炎大鼠比较,经ASA-BMMSCs治疗的牙周炎大鼠的TNF-α和IL-17水平显著下降,而IL-10显著升高。本研究表明,60μg/mL的ASA显著促进了体外BMMSCs的增殖和成骨分化。ASA和BMMSCs联用能够调节大鼠体内相关细胞因子的表达,并减轻炎症反应,可能是牙周炎治疗和牙周骨再生的有效方法。  相似文献   

8.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.  相似文献   

9.
10.
11.
12.
13.
The use of electromagnetic fields (EMFs) to treat nonunion fractures developed from observations in the mid‐1900s. Whether EMF directly regulates the bone marrow mesenchymal stem cells (MSCs), differentiating into osteoblasts or adipocytes, remains unknown. In the present study, we investigated the roles of sinusoidal EMF of 15 Hz, 1 mT in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that EMF promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. EMF increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast‐specific mRNA expression of RUNX2, ALP, BMP2, DLX5, and BSP. In contrast, EMF decreased adipogenesis and inhibited adipocyte‐specific mRNA expression of adipsin, AP‐2, and PPARγ2, and also inhibited protein expression of PPARγ2. These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is influenced by EMF. Bioelectromagnetics 31:277–285, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
The aim of this study was to elucidate the influence of receptor activity modifying protein 1 (RAMP1) overexpression on the expression and distribution of calcitonin receptor‐like receptor (CRLR) in MG‐63 cells. Our research also focused on whether RAMP1 overexpression enhanced the promoting effect of exogenous CGRP on osteogenic differentiation in MG‐63 cells. We first constructed a eukaryotic expression vector containing human RAMP1 and stably transfected it into MG‐63 cells. Real‐time PCR and Western blotting were used to determine the expression levels of RAMP1 and CRLR mRNA and protein, respectively. Immunofluorescence analysis was employed to compare the distribution of CRLR in transfected cells. After treatment with CGRP, the extent of osteogenic differentiation was evaluated by simultaneous monitoring of alkaline phosphatase activity, the expression patterns of osteoblastic markers and mineralisation staining. We found that RAMP1 was more highly expressed in the transfected group compared with the control groups (P < 0.01). The CRLR expression was significantly higher than that in the control groups (P < 0.05). In addition, after 7 days of CGRP treatment to induce osteogenic differentiation, the expression of collagen I mRNA was markedly increased in the transfected group (P < 0.05). The transfected group exhibited more granular precipitation in the cytoplasm with alkaline phosphatase staining after 7 and 14 days of differentiation. When stained with Alizarin Red, cells overexpressing RAMP1 were darker and formed many mineralised nodules with clear boundaries and calcium deposition typical of mineralised bone matrix structures at 28 days post‐induction of differentiation. The CGRP‐induced ALP activity in the RAMP1 overexpression group was significantly higher 3, 6 and 9 days after induction than that in the two control groups (P < 0.05). RAMP1 overexpression promotes CRLR expression, localisation on the cell membrane and enhanced CGRP‐mediated differentiation of MG‐63 cells. This study contributes to a better understanding of the molecular mechanisms governing CGRP‐induced MG‐63 differentiation. J. Cell. Biochem. 114: 314–322, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
19.
MicroRNAs (miRs) involve in osteogenic differentiation and osteogenic potential of mesenchymal stem cells (MSCs). Accordingly, the present study aimed to further uncover role miR-149 plays in osteogenic differentiation of MSCs with the involvement of the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) pathway. Initially, the osteogenic differentiation model was induced. Next, the positive expression of STRO-1 in periosteum, alkaline phosphatase (ALP) activity, osteocalcin (OCN) protein content, and the calcium deposition in MSCs were determined. MSCs were treated with DNA methyltransferase inhibitor 5-aza-CdR, SDF-1 neutralizing antibody, or CXCR4 antagonist AMD3100 to investigate their roles in osteogenic differentiation; with the expression of CD44, CD90, CD14, and CD45 detected. Furthermore, the levels of SDF-1 and CXCR4, and the genes related to stemness (Nanog, Oct-4, and Sox-2) were measured to explore the effects of miR-149. The obtained data revealed the upregulation of STRO-1 in the periosteum. miR-149 could specifically bind to SDF-1. Besides, increased miR-149 methylation, higher ALP activity and OCN content, decreased positive rates of CD44 and CD90, and increased positive rates of CD14 and CD45 were found in osteogenic differentiation of MSCs. Subsequently, 5-Aza-CdR treatment reversed the above-mentioned effects. MSCs were finally treated with SDF-1 neutralizing antibody or AMD3100 to decrease Nanog, Oct-4, and Sox-2 expression. Taken together these results, miR-149 hypermethylation has the potential to activate the SDF-1/CXCR4 pathway and further promote osteogenic differentiation of MSCs.  相似文献   

20.
YAP and TAZ are key downstream regulators of the Hippo pathway, regulating cell proliferation and differentiation. YAP and TAZ activation has been reported in different cancer types. However, it remains unclear whether they are required for the initiation of major skin malignancies like basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Here, we analyze the expression of YAP and TAZ in these skin cancers and evaluate cancer initiation in knockout mouse models. We show that YAP and TAZ are nuclear and highly expressed in different BCC types in both human and mice. Further, we find that cells with nuclear YAP and TAZ localize to the invasive front in well‐differentiated SCC, whereas nuclear YAP is homogeneously expressed in spindle cell carcinoma undergoing EMT. We also show that mouse BCC and SCC are enriched for YAP gene signatures. Finally, we find that the conditional deletion of YAP and TAZ in mouse models of BCC and SCC prevents tumor formation. Thus, YAP and TAZ are key determinants of skin cancer initiation, suggesting that targeting the YAP and TAZ signaling pathway might be beneficial for the treatment of skin cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号