首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding natural selection's effect on genetic variation is a major goal in biology, but the genome‐scale consequences of contemporary selection are not well known. In a release and recapture field experiment we transplanted stick insects to native and novel host plants and directly measured allele frequency changes within a generation at 186 576 genetic loci. We observed substantial, genome‐wide allele frequency changes during the experiment, most of which could be attributed to random mortality (genetic drift). However, we also documented that selection affected multiple genetic loci distributed across the genome, particularly in transplants to the novel host. Host‐associated selection affecting the genome acted on both a known colour‐pattern trait as well as other (unmeasured) phenotypes. We also found evidence that selection associated with elevation affected genome variation, although our experiment was not designed to test this. Our results illustrate how genomic data can identify previously underappreciated ecological sources and phenotypic targets of selection.  相似文献   

2.
1.?Phenotypic plasticity, the response of individual phenotypes to their environment, can allow organisms to cope with spatio-temporal variation in environmental conditions. Recent studies have shown that variation exists among individuals in their capacity to adjust their traits to environmental changes and that this individual plasticity can be under strong selection. Yet, little is known on the extent and ultimate causes of variation between populations and individuals in plasticity patterns. 2.?In passerines, timing of breeding is a key life-history trait strongly related to fitness and is known to vary with the environment, but few studies have investigated the within-species variation in individual plasticity. 3.?Here, we studied between- and within-population variation in breeding time, phenotypic plasticity and selection patterns for this trait in four Mediterranean populations of blue tits (Cyanistes caeruleus) breeding in habitats varying in structure and quality. 4.?Although there was no significant warming over the course of the study, we found evidence for earlier onset of breeding in warmer years in all populations, with reduced plasticity in the less predictable environment. In two of four populations, there was significant inter-individual variation in plasticity for laying date. Interestingly, selection for earlier laying date was significant only in populations where there was no inter-individual differences in plasticity. 5.?Our results show that generalization of plasticity patterns among populations of the same species might be challenging even at a small spatial scale and that the amount of within-individual variation in phenotypic plasticity may be linked to selective pressures acting on these phenotypic traits.  相似文献   

3.
4.
A higher frequency of natural selection is expected in populations of organisms with shorter generation times. In fire‐prone ecosystems, populations of seeder plants behave as functionally semelparous populations, with short generation times compared to populations of resprouter plants, which are truly iteroparous. Therefore, a stronger signature of natural selection should be detected in seeder populations, favoured by their shorter generation times and higher rates of population turnover. Here we test this idea in Erica coccinea from the Cape Floristic Region, which is dimorphic for post‐fire regeneration mode. We measured three floral traits supposedly subject to natural selection in seeder and resprouter populations. We then compared phenotypic trait variation with neutral genetic variation in each group of populations using PSTFST comparisons to detect signatures of natural selection in seeders and resprouters. We found a strong signature of selection in seeder populations, but not in resprouters. Furthermore, anthers of seeders were more exserted (and larger) than those of resprouters. These differences were maintained at sites where seeders and resprouters co‐occurred, suggesting that phenotypic plasticity or adaptation to different growth environments are unlikely explanations for trait variation. These results provide empirical support for the hypothesis that the genetic signature of natural selection is certainly more intense in seeder than in resprouter populations, favoured by their comparatively faster generation turnovers. Increased frequency of natural selection would increase differentiation among populations, thus promoting speciation in pyrophytic seeder lineages of the Cape flora.  相似文献   

5.
A major question for conservationists and evolutionary biologists is whether natural populations can adapt to rapid environmental change through micro‐evolution or phenotypic plasticity. Making use of 17 years of data from a colony of a long‐distant migratory seabird, the common tern (Sterna hirundo), we examined phenotypic plasticity and the evolutionary potential of breeding phenology, a key reproductive trait. We found that laying date was strongly heritable (0.27 ± 0.09) and under significant fecundity selection for earlier laying. Paradoxically, and in contrast to patterns observed in most songbird populations, laying date became delayed over the study period, by about 5 days. The discrepancy between the observed changes and those predicted from selection on laying date was explained by substantial phenotypic plasticity. The plastic response in laying date did not vary significantly among individuals. Exploration of climatic factors showed individual responses to the mean sea surface temperature in Senegal in December prior to breeding: Common terns laid later following warmer winters in Senegal. For each 1°C of warming of the sea surface in Senegal, common terns delayed their laying date in northern Germany by 6.7 days. This suggests that warmer waters provide poorer wintering resources. We therefore found that substantial plastic response to wintering conditions can oppose natural selection, perhaps constraining adaptation.  相似文献   

6.
7.
With its small, diploid and completely sequenced genome, sorghum (Sorghum bicolor L. Moench) is highly amenable to genomics‐based breeding approaches. Here, we describe the development and testing of a robust single‐nucleotide polymorphism (SNP) array platform that enables polymorphism screening for genome‐wide and trait‐linked polymorphisms in genetically diverse S. bicolor populations. Whole‐genome sequences with 6× to 12× coverage from five genetically diverse S. bicolor genotypes, including three sweet sorghums and two grain sorghums, were aligned to the sorghum reference genome. From over 1 million high‐quality SNPs, we selected 2124 Infinium Type II SNPs that were informative in all six source genomes, gave an optimal Assay Design Tool (ADT) score, had allele frequencies of 50% in the six genotypes and were evenly spaced throughout the S. bicolor genome. Furthermore, by phenotype‐based pool sequencing, we selected an additional 876 SNPs with a phenotypic association to early‐stage chilling tolerance, a key trait for European sorghum breeding. The 3000 attempted bead types were used to populate half of a dual‐species Illumina iSelect SNP array. The array was tested using 564 Sorghum spp. genotypes, including offspring from four unrelated recombinant inbred line (RIL) and F2 populations and a genetic diversity collection. A high call rate of over 80% enabled validation of 2620 robust and polymorphic sorghum SNPs, underlining the efficiency of the array development scheme for whole‐genome SNP selection and screening, with diverse applications including genetic mapping, genome‐wide association studies and genomic selection.  相似文献   

8.
9.
Introgression of genomic variation between and within related crop species is a significant evolutionary approach for population differentiation, genome reorganization and trait improvement. Using the Illumina Infinium Brassica 60K SNP array, we investigated genomic changes in a panel of advanced generation new‐type Brassica napus breeding lines developed from hundreds of interspecific crosses between 122 Brassica rapa and 74 Brassica carinata accessions, and compared them with representative accessions of their three parental species. The new‐type B. napus population presented rich genetic diversity and abundant novel genomic alterations, consisting of introgressions from B. rapa and B. carinata, novel allelic combinations, reconstructed linkage disequilibrium patterns and haplotype blocks, and frequent deletions and duplications (nonrandomly distributed), particularly in the C subgenome. After a much shorter, but very intensive, selection history compared to traditional B. napus, a total of 15 genomic regions with strong selective sweeps and 112 genomic regions with putative signals of selective sweeps were identified. Some of these regions were associated with important agronomic traits that were selected for during the breeding process, while others were potentially associated with restoration of genome stability and fertility after interspecific hybridization. Our results demonstrate how a novel method for population‐based crop genetic improvement can lead to rapid adaptation, restoration of genome stability and positive responses to artificial selection.  相似文献   

10.
11.
The fitness consequences of mating system variation (e.g. inbreeding) have been studied for at least 200 years, yet the ecological consequences of this variation remain poorly understood. Most plants are capable of inbreeding, and also exhibit a remarkable suite of adaptive phenotypic responses to ecological stresses such as herbivory. We tested the consequences of experimental inbreeding on phenotypic plasticity in resistance and growth (tolerance) traits in Solanum carolinense (Solanaceae). Inbreeding reduced the ability of plants to up‐regulate resistance traits following damage. Moreover, inbreeding disrupted growth trait responses to damage, indicating the presence of deleterious mutations at loci regulating growth under stress. Production of the phytohormones abscisic and indole acetic acid, and wounding‐induced up‐regulation of the defence signalling phytohormone jasmonic acid were all significantly reduced under inbreeding, indicating a phytohormonal basis for inbreeding effects on growth and defence trait regulation. We conclude that the plasticity of induced responses is negatively affected by inbreeding, with implications for fragmented populations facing mate limitation and stress as a consequence of environmental change.  相似文献   

12.
Abstract Laboratory selection experiments are powerful tools for establishing evolutionary potentials. Such experiments provide two types of information, knowledge about genetic architecture and insight into evolutionary dynamics. They can be roughly classified into two types: (1) artificial selection in which the experimenter selects on a focal trait or trait index, and (2) quasi‐natural selection in which the experimenter establishes a set of environmental conditions and then allows the population to evolve. Both approaches have been used in the study of phenotypic plasticity. Artificial selection experiments have taken various forms including: selection directly on a reaction norm, selection on a trait in multiple environments, and selection on a trait in a single environment. In the latter experiments, evolution of phenotypic plasticity is investigated as a correlated response. Quasi‐natural selection experiments have examined the effects of both spatial and temporal variation. I describe how to carry out such experiments, summarize past efforts, and suggest further avenues of research.  相似文献   

13.
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.  相似文献   

14.
Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome‐scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence‐level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.  相似文献   

15.
Biologists have been fascinated with the extreme products of sexual selection for decades. However, relatively few studies have characterized patterns of selection acting on ornaments and weapons in the wild. Here, we measure selection on a wild population of weapon‐bearing beetles (frog‐legged leaf beetles: Sagra femorata) for two consecutive breeding seasons. We consider variation in both weapon size (hind leg length) and in relative weapon size (deviations from the population average scaling relationship between hind leg length and body size), and provide evidence for directional selection on weapon size per se and stabilizing selection on a particular scaling relationship in this population. We suggest that whenever growth in body size is sensitive to external circumstance such as nutrition, then considering deviations from population‐level scaling relationships will better reflect patterns of selection relevant to evolution of the ornament or weapon than will variation in trait size per se. This is because trait‐size versus body‐size scaling relationships approximate underlying developmental reaction norms relating trait growth with body condition in these species. Heightened condition‐sensitive expression is a hallmark of the exaggerated ornaments and weapons favored by sexual selection, yet this plasticity is rarely reflected in the way we think about—and measure—selection acting on these structures in the wild.  相似文献   

16.
Spatial patterns of intraspecific variation are shaped by geographical distance among populations, historical changes in gene flow and interactions with local environments. Although these factors are not mutually exclusive and operate on both genomic and phenotypic variation, it is unclear how they affect these two axes of variation. We address this question by exploring the predictors of genomic and phenotypic divergence in Icterus gularis, a broadly distributed Middle American bird that exhibits marked geographical variation in body size across its range. We combined a comprehensive single nucleotide polymorphism and phenotypic data set to test whether genome‐wide genetic and phenotypic differentiation are best explained by (i) isolation by distance, (ii) isolation by history or (iii) isolation by environment. We find that the pronounced genetic and phenotypic variation in I. gularis are only partially correlated and differ regarding spatial predictors. Whereas genomic variation is largely explained by historical barriers to gene flow, phenotypic diversity can be best predicted by contemporary environmental heterogeneity. Our genomic analyses reveal strong phylogeographical structure coinciding with the Chivela Pass at the Isthmus of Tehuantepec that was formed during the Pleistocene, when populations were isolated in north–south refugia. In contrast, we found a strong association between body size and environmental variables, such as temperature and precipitation. The relationship between body size and local climate is consistent with a pattern produced by either natural selection or environmental plasticity. Overall, these results provide empirical evidence for why phenotypic and genomic data are often in conflict in taxonomic and phylogeographical studies.  相似文献   

17.
Durum wheat (Triticum turgidum subsp. durum) is a key crop worldwide, and yet, its improvement and adaptation to emerging environmental threats is made difficult by the limited amount of allelic variation included in its elite pool. New allelic diversity may provide novel loci to international crop breeding through quantitative trait loci (QTL) mapping in unexplored material. Here, we report the extensive molecular and phenotypic characterization of hundreds of Ethiopian durum wheat landraces and several Ethiopian improved lines. We test 81 587 markers scoring 30 155 single nucleotide polymorphisms and use them to survey the diversity, structure, and genome‐specific variation in the panel. We show the uniqueness of Ethiopian germplasm using a siding collection of Mediterranean durum wheat accessions. We phenotype the Ethiopian panel for ten agronomic traits in two highly diversified Ethiopian environments for two consecutive years and use this information to conduct a genome‐wide association study. We identify several loci underpinning agronomic traits of interest, both confirming loci already reported and describing new promising genomic regions. These loci may be efficiently targeted with molecular markers already available to conduct marker‐assisted selection in Ethiopian and international wheat. We show that Ethiopian durum wheat represents an important and mostly unexplored source of durum wheat diversity. The panel analysed in this study allows the accumulation of QTL mapping experiments, providing the initial step for a quantitative, methodical exploitation of untapped diversity in producing a better wheat.  相似文献   

18.
Adaptive genetic differentiation and adaptive phenotypic plasticity can increase the fitness of plant lineages in heterogeneous environments. We examine the relative importance of genetic differentiation and plasticity in determining the fitness of the annual plant, Erodium cicutarium, in a serpentine grassland in California. Previous work demonstrated that the serpentine sites within this mosaic display stronger dispersal‐scale heterogeneity than nonserpentine sites. We conducted a reciprocal transplant experiment among six sites to characterize selection on plasticity expressed by 180 full‐sibling families in response to natural environmental heterogeneity across these sites. Multivariate axes of environmental variation were constructed using a principal components analysis of soil chemistry data collected at every experimental block. Simple linear regressions were used to characterize the intercept, and slope (linear and curvilinear) of reaction norms for each full‐sibling family in response to each axis of environmental variation. Multiple linear regression analyses revealed significant selection on trait means and slopes of reaction norms. Multivariate analyses of variance demonstrated genetic differentiation between serpentine and nonserpentine lineages in the expression of plasticity in response to three of the five axes of environmental variation considered. In all but one case, serpentine genotypes expressed a stronger adaptive plastic response than nonserpentine genotypes.  相似文献   

19.
Among‐population variation in chill‐coma onset temperature (CTmin) is thought to reflect natural selection for local microclimatic conditions. However, few studies have investigated the evolutionary importance of cold tolerance limits in natural populations. Here, using a common‐environment approach, we show pronounced variation in CTmin (± 4 °C) across the geographic range of a nonoverwintering crop pest, Eldana saccharina. The outcomes of this study provide two notable results in the context of evolved chill‐coma variation: (1) CTmin differs significantly between geographic lines and is significantly positively correlated with local climates, and (2) there is a stable genetic architecture underlying CTmin trait variation, likely representing four key genes. Crosses between the most and least cold‐tolerant geographic lines confirmed a genetic component to CTmin trait variation. Slower developmental time in the most cold‐tolerant population suggests that local adaptation involves fitness costs; however, it confers fitness benefits in that environment. A significant reduction in phenotypic plasticity in the laboratory population suggests that plasticity of this trait is costly to maintain but also likely necessary for field survival. These results are significant for understanding field population adaption to novel environments, whereas further work is needed to dissect the underlying mechanism and gene(s) responsible.  相似文献   

20.
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life‐history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome‐wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short‐winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short‐winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high‐elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号