首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of dissolved‐core alginate‐templated fluorescent microspheres as “smart tattoo” glucose biosensors was investigated in simulated interstitial fluid (SIF). The sensor works on the principle of competitive binding and fluorescence resonance energy transfer. The sensor consists of multilayer thin film coated alginate microspheres incorporating dye‐labeled glucose receptor and competing ligand within the partially dissolved alginate core. In this study, different approaches for the sensing and detection chemistry were studied, and the response of encapsulated reagents was compared with the solution‐phase counterparts. The glucose sensitivity of the encapsulated TRITC‐Con A/FITC‐dextran (500 kDa) assay in DI water was estimated to be 0.26%/mM glucose while that in SIF was observed to be 0.3%/mM glucose. The glucose sensitivity of TRITC‐apo‐GOx/FITC‐dextran (500 kDa) assay was estimated to be 0.33%/mM glucose in DI water and 0.5%/mM glucose in SIF and both demonstrated a response in the range of 0–50 mM glucose. Therefore, it is hypothesized that the calcium ion concentration outside the microsphere (in the SIF) does not interfere with the response sensitivity. The sensor response was observed to exhibit a maximum response time of 120 s. The system further exhibited a sensitivity of 0.94%/mM glucose with a response in range of 0–50 mM glucose, using near‐infrared dyes (Alexa Fluor‐647‐labeled dextran as donor and QSY‐21‐conjugated apo‐GOx as acceptor), thereby making the sensor more amenable to in vivo use, when implanted in scattering tissue. Biotechnol. Bioeng. 2009; 104: 1075–1085. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Primary cilia are sensory, antennae‐like organelles present on the surface of many cell types. They have been involved in a variety of diseases collectively termed ciliopathies. As cilia are essential regulators of cell signaling, the composition of the ciliary membrane needs to be strictly regulated. To understand regulatory processes at the ciliary membrane, we report the targeting of a genetically engineered enzyme specifically to the ciliary membrane to allow biotinylation and identification of the membrane‐associated proteome. Bioinformatic analysis of the comprehensive dataset reveals high‐stoichiometric presence of actin‐binding proteins inside the cilium. Immunofluorescence stainings and complementary interaction proteomic analyses confirm these findings. Depolymerization of branched F‐actin causes further enrichment of the actin‐binding and actin‐related proteins in cilia, including Myosin 5a (Myo5a). Interestingly, Myo5a knockout decreases ciliation while enhanced levels of Myo5a are observed in cilia upon induction of ciliary disassembly. In summary, we present a novel approach to investigate dynamics of the ciliary membrane proteome in mammalian cells and identify actin‐binding proteins as mechanosensitive components of cilia that might have important functions in cilia membrane dynamics.  相似文献   

3.
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane‐associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo‐electron microscopy (cryo‐EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ~20 nm inner diameter and a few microns in length, that self‐assemble in aqueous solutions. The lipid nanodisks (NDs) are self‐assembled discoid lipid bilayers of ~10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane‐associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane‐bound coagulation factor VIII in vitro for structure determination by cryo‐EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three‐dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane‐associated proteins and complexes for structural studies by cryo‐EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane‐associated proteins, such as the coagulation factors, at a close to physiological environment. Proteins 2014; 82:2902–2909. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Bernd Reiss  Rolf Sprengel  Hans Will  Heinz Schaller   《Gene》1984,30(1-3):211-217
A general method is described for the detection and quantification of low amounts of neomycin phosphotransferase in crude cell extracts. The assay is based on the electrophoretic separation of the enzyme from other interfering proteins and detection of its enzymatic activity by in situ phosphorylation of the antibiotic kanamycin. Both kanamycin and [γ32P]ATP acting as substrates are embedded in an agarose gel placed on the polyacrylamide gel containing the separated proteins. After the enzymatic reaction, the phosphorylated kanamycin is transferred to P81 phosphocellulose ion exchange paper and the radiolabeled kanamycin is visualised by autoradiography. With this method 1 ng of active enzyme can easily be detected. Both prokaryotic and eukaryotic cell extracts can be examined, and changes in the size of enzymatically active proteins can be determined.  相似文献   

5.
Three families of membrane‐active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes. Preamyloid states of these peptides can act as toxins by binding to and permeabilizing cellular membranes. Cell‐penetrating peptides are natural or engineered short sequences that can spontaneously translocate across a membrane. Despite these differences in classification, many similarities in sequence, structure, and activity suggest that peptides from all three classes act through a small, common set of physical principles. Namely, these peptides alter the Brownian properties of phospholipid bilayers, enhancing the sampling of intrinsic fluctuations that include membrane defects. A complete energy landscape for such systems can be described by the innate membrane properties, differential partition, and the associated kinetics of peptides dividing between surface and defect regions of the bilayer. The goal of this review is to argue that the activities of these membrane‐active families of peptides simply represent different facets of what is a shared energy landscape.  相似文献   

6.
7.
We present single‐molecule fluorescence data of fluorescent proteins GFP, YFP, DsRed, and mCherry, a new derivative of DsRed. Ensemble and single‐molecule fluorescence experiments proved mCherry as an ideally suited fluorophore for single‐molecule applications, demonstrated by high photostability and rare fluorescence‐intensity fluctuations. Although mCherry exhibits the lowest fluorescence quantum yield among the fluorescent proteins investigated, its superior photophysical characteristics suggest mCherry as an ideal alternative in single‐molecule fluorescence experiments. Due to its spectral characteristics and short fluorescence lifetime of 1.46 ns, mCherry complements other existing fluorescent proteins and is recommended for tracking and localization of target molecules with high accuracy, fluorescence resonance energy transfer (FRET), fluorescence lifetime imaging microscopy (FLIM), or multicolor applications. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Knowledge of the conformations of a water‐soluble protein bound to a membrane is important for understanding the membrane‐interaction mechanisms and the membrane‐mediated functions of the protein. In this study we applied vacuum‐ultraviolet circular‐dichroism (VUVCD) and linear‐dichroism (LD) spectroscopy to analyze the conformations of α‐lactalbumin (LA), thioredoxin (Trx), and β‐lactoglobulin (LG) bound to phosphatidylglycerol liposomes. The VUVCD analysis coupled with a neural‐network analysis showed that these three proteins have characteristic helix‐rich conformations involving several helical segments, of which two amphiphilic or hydrophobic segments take part in interactions with the liposome. The LD analysis predicted the average orientations of these helix segments on the liposome: two amphiphilic helices parallel to the liposome surface for LA, two hydrophobic helices perpendicular to the liposome surface for Trx, and a hydrophobic helix perpendicular to and an amphiphilic helix parallel to the liposome surface for LG. This sequence‐level information about the secondary structures and orientations was used to formulate interaction models of the three proteins at the membrane surface. This study demonstrates the validity of a combination of VUVCD and LD spectroscopy in conformational analyses of membrane‐binding proteins, which are difficult targets for X‐ray crystallography and nuclear magnetic resonance spectroscopy. Proteins 2016; 84:349–359. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
The interaction of acid (PTCA) with cetyltrimethylammonium bromide (CTAB) has been studied by fluorescence spectroscopy. The fluorescence of PTCA can be greatly enhanced by the addition of CTAB, due to the formation a fluorescent supramolecular compound. Under optimum conditions, the enhancement intensity of fluorescence was proportional to the concentration of CTAB over a range of 0–4.5 µmol L?1. Its detection limit was 0.057 µmol L?1, which was lower than reported previously. Compared with other methods that have been reported to determine CTAB, this method has high sensitivity, stability and wide linear range and it can be used satisfactorily for the determination of CTAB in aqueous samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Mackintosh JA  Veal DA  Karuso P 《Proteomics》2005,5(18):4673-4677
The development of a sensitive fluorescence-based assay for the quantitative determination of protein concentration is described. The assay is based on the natural product epicocconone, which produces a large increase in fluorescence quantum yield upon binding to detergent-coated proteins in solution. There is a concomitant shift in the emission maximum from 520 to 605 nm after binding, which results in low background signal allowing a linear dynamic range of 40 ng/mL to 200 microg/mL for most proteins. There is little protein-to-protein variation except for iron-containing proteins and the assay can be used so that it is tolerant of chemicals commonly used in 2-D sample buffers. The assay is more sensitive than standard absorption assays such as the Bradford and Lowry assays, and has a greater dynamic range and sensitivity than other fluorescent assays.  相似文献   

11.
12.
13.
Seven‐helix transmembrane proteins, including the G‐protein‐coupled receptors (GPCRs), mediate a broad range of fundamental cellular activities through binding to a wide range of ligands. Understanding the structural basis for the ligand‐binding selectivity of these proteins is of significance to their structure‐based drug design. Comparison analysis of proteins' ligand‐binding sites provides a useful way to study their structure‐activity relationships. Various computational methods have been developed for the binding‐site comparison of soluble proteins. In this work, we applied this approach to the analysis of the primary ligand‐binding sites of 92 seven‐helix transmembrane proteins. Results of the studies confirmed that the binding site of bacterial rhodopsins is indeed different from all GPCRs. In the latter group, further comparison of the binding sites indicated a group of residues that could be responsible for ligand‐binding selectivity and important for structure‐based drug design. Furthermore, unexpected binding‐site dissimilarities were observed among adrenergic and adenosine receptors, suggesting that the percentage of the overall sequence identity between a target protein and a template protein alone is not sufficient for selecting the best template for homology modeling of seven‐helix membrane proteins. These results provided novel insight into the structural basis of ligand‐binding selectivity of seven‐helix membrane proteins and are of practical use to the computational modeling of these proteins. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 31–38, 2011.  相似文献   

14.
Recombinant monoclonal antibodies (MAbs) are increasingly being used for therapeutic use and correct glycosylation of these MAbs is essential for their correct function. Glycosylation profiles are host cell‐ and antibody class‐dependent and can change over culture time and environmental conditions. Therefore, rapid monitoring of glycan addition/status is of great importance for process validity. We describe two workflows of generally applicability for glycan profiling of purified and gel‐purified MAbs produced in NS0 and CHO cells, in which small‐scale antibody purification and buffer exchange is combined with PNGase F glycan cleavage and graphite HyperCarb desalting. MALDI‐ToF mass spectrometry is used for sensitive detection of glycan forms, with the ability to confirm glycan structures by selective ion fragmentation. Both workflows are rapid, technically simple and amenable to automation, and use in multi‐well formats. Biotechnol. Bioeng. 2010;107: 902–908. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
16.
The Bcl‐2 inhibitor FKBP38 is regulated by the Ca2+‐sensor calmodulin (CaM). Here we show a hitherto unknown low‐affinity cation‐binding site in the FKBP domain of FKBP38, which may afford an additional level of regulation based on electrostatic interactions. Fluorescence titration experiments indicate that in particular the physiologically relevant Ca2+ ion binds to this site. NMR‐based chemical shift perturbation data locate this cation‐interaction site within the β5–α1 loop (Leu90–Ile96) of the FKBP domain, which contains the acidic Asp92 and Asp94 side‐chains. Binding constants were subsequently determined for K+, Mg2+, Ca2+, and La3+, indicating that the net charge and the radius of the ion influences the binding interaction. X‐ray diffraction data furthermore show that the conformation of the β5–α1 loop is influenced by the presence of a positively charged guanidinium group belonging to a neighboring FKBP38 molecule in the crystal lattice. The position of the cation‐binding site has been further elucidated based on pseudocontact shift data obtained by NMR via titration with Tb3+. Elimination of the Ca2+‐binding capacity by substitution of the respective aspartate residues in a D92N/D94N double‐substituted variant reduces the Bcl‐2 affinity of the FKBP3835–153/CaM complex to the same degree as the presence of Ca2+ in the wild‐type protein. Hence, this charge‐sensitive site in the FKBP domain participates in the regulation of FKBP38 function by enabling electrostatic interactions with ligand proteins and/or salt ions such as Ca2+. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The comprehensive and quantitative analysis of the protein phosphorylation patterns in different cellular context is of considerable and general interest. The ability to quantify phosphorylation of discrete signalling proteins in large collections of biological samples would greatly favour the development of systems biology in the field of cell signalling. Reverse‐phase protein array (RPPA) potentially represents a very attractive approach to map signal transduction networks with high throughput. In the present report, we describe an improved detection method for RPPA combining near‐infrared with one or two rounds of tyramide‐based signal amplification. The LOQ was lowered from 6.84 attomoles with a direct detection protocol to 0.21 attomole with two amplification steps. We validated this method in the context of intracellular signal transduction triggered by follicle‐stimulating hormone in HEK293 cells. We consistently detected phosphorylated proteins in the sub‐attomole range from less than 1 ng of total cell extracts. Importantly, the method correlated with Western blot analysis of the same samples while displaying excellent intra‐ and inter‐slide reproducibility. We conclude that RPPA combined with amplified near‐infrared detection can be used to capture the subtle regulations intrinsic to signalling network dynamics at an unprecedented throughput, from minute amounts of biological samples.  相似文献   

18.
Pheromone‐binding proteins (PBPs) play important roles in the information exchange between insect sexes, specifically in the process of transporting fat‐soluble odour molecules from the external environment to olfactory receptors through the olfactory sensillum lymph. The PBP functions in this process may explain the sex pheromone identification mechanism used by insects, laying a theoretical foundation for the prevention and control of pests by interfering with olfactory recognition. In the present study, a PBP gene of Cyrtotrachelus buqueti (GenBank accession number: KU845733) is cloned for prokaryotic expression. Using N‐phenyl‐1‐naphthylamine as the fluorescent probe in a competitive binding assay, the ability of CbuqPBP1 to bind 12 sex pheromone analogues and three volatiles of Neosinocalamus affinis shoots is examined. Of the 12 C. buqueti sex pheromone analogues, dibutyl phthalate gives the greatest displacement (inhibitory constant value of 11.1 μm ), whereas the other sex pheromone components show much smaller displacements. Consistent with other PBPs, the three plant volatiles (linalool, benzaldehyde and indole) show only a limited displacement of CbuqPBP1. However, the binding abilities of 1 : 1 ratios of each of the three plant volatiles with dibutyl phthalate show increases of 62.3%, 65.1% and 51.7% over the binding abilities of the three plant volatiles alone. CbuqPBP1 has dual roles in the processes of sensing sex pheromones and plant volatiles.  相似文献   

19.
The soybean aphid, Aphis glycines, is an extreme specialist and an important invasive pest that relies on olfaction for behaviors such as feeding, mating, and foraging. Odorant‐binding proteins (OBPs) play a vital role in olfaction by binding to volatile compounds and by regulating insect sensing of the environment. In this work we used rapid amplification of complementary DNA ends technology to identify and characterize 10 genes encoding A. glycines OBPs (AglyOBPs) belonging to 3 subfamilies, including 4 classic OBPs, 5 Plus‐C OBPs, and one Minus‐C OBP. Quantitative real‐time polymerase chain reaction demonstrated variable specific expression patterns for the 10 genes based on developmental stage and aphid tissue sampled. Expression levels of 7 AglyOBPs (2, 3, 4, 5, 7, 9, and 10) were highest in the 4th instar, indicating that the 4th nymphal instar is an important developmental period during which soybean aphids regulate feeding and search for host plants. Tissue‐specific expression results demonstrated that AglyOBP2, 7, and 9 exhibited significantly higher expression levels in antennae. Meanwhile, ligand‐binding analysis of 5 OBPs demonstrated binding of AglyOBP2 and AglyOBP3 to a broad spectrum of volatiles released by green leaf plants, with bias toward 6‐ to 8‐carbon chain volatiles and strong binding of AglyOBP7 to transβ‐farnesene. Taken together, our findings build a foundation of knowledge for use in the study of molecular olfaction mechanisms and provide insights to guide future soybean aphid research.  相似文献   

20.
Aims: The aim of this study was to develop a real‐time quantitative PCR test to recognize and quantify the DNA levels of the increasingly important barley pathogen Ramularia collo‐cygni. Methods and Results: The method described uses specifically designed primers and a molecular beacon probe based on an internal transcribed spacer (ITS) sequence. Pathogen extracted from barley leaves could be quantified to the picogram level in both leaves showing symptoms of infection and symptomless barley leaves. Conclusions: A relationship between R. collo‐cygni DNA levels and disease symptoms was established in spring barley under natural infection conditions. Significance and Impact of the Study: To our knowledge, this is the first report of a test of this type and makes an important contribution to studies into the life cycle of this pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号