首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reliable identification of individual chromosomes in eukaryotic species is the foundation for comparative chromosome synteny and evolutionary studies. Unfortunately, chromosome identification has been a major challenge for plants with small chromosomes, such as the Citrus species. We developed oligonucleotide‐based chromosome painting probes for all nine chromosomes in Citrus maxima (Pummelo). We were able to identify all C. maxima chromosomes in the same metaphase cells using multiple rounds of sequential fluorescence in situ hybridization with the painting probes. We conducted comparative chromosome painting analysis in six different Citrus and related species. We found that each painting probe hybridized to only a single chromosome in all other five species, suggesting that the six species have maintained a complete chromosomal synteny after more than 9 million years of divergence. No interchromosomal rearrangement was identified in any species. These results support the hypothesis that karyotypes of woody species are more stable than herbaceous plants because woody plants need a longer period to fix chromosome structural variants in natural populations.  相似文献   

2.
Parasitoid wasps represent a large proportion of hymenopteran species. They have complex evolutionary histories and are important biocontrol agents. To advance parasitoid research, a combination of Illumina short‐read, PacBio long‐read and Hi‐C scaffolding technologies was used to develop a high‐quality chromosome‐level genome assembly for Pteromalus puparum, which is an important pupal endoparasitoid of caterpillar pests. The chromosome‐level assembly has aided in studies of venom and detoxification genes. The assembled genome size is 338 Mb with a contig N50 of 38.7 kb and a scaffold N50 of 1.16 Mb. Hi‐C analysis assembled scaffolds onto five chromosomes and raised the scaffold N50 to 65.8 Mb, with more than 96% of assembled bases located on chromosomes. Gene annotation was assisted by RNA sequencing for the two sexes and four different life stages. Analysis detected 98% of the BUSCO (Benchmarking Universal Single‐Copy Orthologs) gene set, supporting a high‐quality assembly and annotation. In total, 40.1% (135.6 Mb) of the assembly is composed of repetitive sequences, and 14,946 protein‐coding genes were identified. Although venom genes play important roles in parasitoid biology, their spatial distribution on chromosomes was poorly understood. Mapping has revealed venom gene tandem arrays for serine proteases, pancreatic lipase‐related proteins and kynurenine–oxoglutarate transaminases, which have amplified in the P. puparum lineage after divergence from its common ancestor with Nasonia vitripennis. In addition, there is a large expansion of P450 genes in P. puparum. These examples illustrate how chromosome‐level genome assembly can provide a valuable resource for molecular, evolutionary and biocontrol studies of parasitoid wasps.  相似文献   

3.
Antheraea pernyi is a semi‐domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high‐quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77‐Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein‐coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.  相似文献   

4.
Miniature inverted‐repeat transposable elements (MITEs) are known to contribute to the evolution of plants, but only limited information is available for MITEs in the Prunus genome. We identified a MITE that has been named Falling Stones, FaSt. All structural features (349‐bp size, 82‐bp terminal inverted repeats and 9‐bp target site duplications) are consistent with this MITE being a putative member of the Mutator transposase superfamily. FaSt showed a preferential accumulation in the short AT‐rich segments of the euchromatin region of the peach genome. DNA sequencing and pollination experiments have been performed to confirm that the nested insertion of FaSt into the S‐haplotype‐specific F‐box gene of apricot resulted in the breakdown of self‐incompatibility (SI). A bioinformatics‐based survey of the known Rosaceae and other genomes and a newly designed polymerase chain reaction (PCR) assay verified the Prunoideae‐specific occurrence of FaSt elements. Phylogenetic analysis suggested a recent activity of FaSt in the Prunus genome. The occurrence of a nested insertion in the apricot genome further supports the recent activity of FaSt in response to abiotic stress conditions. This study reports on a presumably active non‐autonomous Mutator element in Prunus that exhibits a major indirect genome shaping force through inducing loss‐of‐function mutation in the SI locus.  相似文献   

5.
6.
Isomaltulose (IM) is a natural isomer of sucrose. It is widely approved as a food with properties including slower digestion, lower glycaemic index and low cariogenicity, which can benefit consumers. Availability is currently limited by the cost of fermentative conversion from sucrose. Transgenic sugarcane plants with developmentally‐controlled expression of a silencing‐resistant gene encoding a vacuole‐targeted IM synthase were tested under field conditions typical of commercial sugarcane cultivation. High yields of IM were obtained, up to 483 mm or 81% of total sugars in whole‐cane juice from plants aged 13 months. Using promoters from sugarcane to drive expression preferentially in the sugarcane stem, IM levels were consistent between stalks and stools within a transgenic line and across consecutive vegetative field generations of tested high‐isomer lines. Germination and early growth of plants from setts were unaffected by IM accumulation, up to the tested level around 500 mm in flanking stem internodes. These are the highest yields ever achieved of value‐added materials through plant metabolic engineering. The sugarcane stem promoters are promising for strategies to achieve even higher IM levels and for other applications in sugarcane molecular improvement. Silencing‐resistant transgenes are critical to deliver the potential of these promoters in practical sugarcane improvement. At the IM levels now achieved in field‐grown sugarcane, direct production of IM in plants is feasible at a cost approaching that of sucrose, which should make the benefits of IM affordable on a much wider scale.  相似文献   

7.
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome‐scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single‐molecule real‐time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi‐C‐based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein‐coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.  相似文献   

8.
9.
10.
Yellow perch, Perca flavescens, is an ecologically and economically important species native to a large portion of the northern United States and southern Canada and is also a promising candidate species for aquaculture. However, no yellow perch reference genome has been available to facilitate improvements in both fisheries and aquaculture management practices. By combining Oxford Nanopore Technologies long‐reads, 10X Genomics Illumina short linked reads and a chromosome contact map produced with Hi‐C, we generated a high‐continuity chromosome‐scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome‐size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). We also provide a first characterization of the yellow perch sex determination locus that contains a male‐specific duplicate of the anti‐Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex‐specific information, we developed a simple PCR genotyping assay which accurately differentiates XY genetic males (amhr2by+) from XX genetic females (amhr2by?). Our high‐quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries and aquaculture research. In addition, characterization of the amhr2by gene as a candidate sex‐determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.  相似文献   

11.
A major barrier to evolutionary studies of sex determination and sex chromosomes has been a lack of information on the types of sex‐determining mechanisms that occur among different species. This is particularly problematic in groups where most species lack visually heteromorphic sex chromosomes, such as fish, amphibians and reptiles, because cytogenetic analyses will fail to identify the sex chromosomes in these species. We describe the use of restriction site‐associated DNA (RAD) sequencing, or RAD‐seq, to identify sex‐specific molecular markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the lizard Anolis carolinensis. We performed RAD‐seq on seven male and ten female A. carolinensis and found one male‐specific molecular marker. Anolis carolinensis has previously been shown to possess male heterogamety and the recently published A. carolinensis genome facilitated the characterization of the sex‐specific RAD‐seq marker. We validated the male specificity of the new marker using PCR on additional individuals and also found that it is conserved in some other Anolis species. We discuss the utility of using RAD‐seq to identify sex‐determining mechanisms in other species with cryptic or homomorphic sex chromosomes and the implications for the evolution of male heterogamety in Anolis.  相似文献   

12.
An efficient Agrobacterium‐mediated site‐specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter‐trap system consisting of a pre‐integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY‐ (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY‐). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%–22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full‐length site‐specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development.  相似文献   

13.
For future food security, it is important that wheat, one of the most widely consumed crops in the world, can survive the threat of abiotic and biotic stresses. New genetic variation is currently being introduced into wheat through introgressions from its wild relatives. For trait discovery, it is necessary that each introgression is homozygous and hence stable. Breeding programmes rely on efficient genotyping platforms for marker‐assisted selection (MAS). Recently, single nucleotide polymorphism (SNP)‐based markers have been made available on high‐throughput Axiom® SNP genotyping arrays. However, these arrays are inflexible in their design and sample numbers, making their use unsuitable for long‐term MAS. SNPs can potentially be converted into Kompetitive allele‐specific PCR (KASP?) assays that are comparatively cost‐effective and efficient for low‐density genotyping of introgression lines. However, due to the polyploid nature of wheat, KASP assays for homoeologous SNPs can have difficulty in distinguishing between heterozygous and homozygous hybrid lines in a backcross population. To identify co‐dominant SNPs, that can differentiate between heterozygotes and homozygotes, we PCR‐amplified and sequenced genomic DNA from potential single‐copy regions of the wheat genome and compared them to orthologous copies from different wild relatives. A panel of 620 chromosome‐specific KASP assays have been developed that allow rapid detection of wild relative segments and provide information on their homozygosity and site of introgression in the wheat genome. A set of 90 chromosome‐nonspecific assays was also produced that can be used for genotyping introgression lines. These multipurpose KASP assays represent a powerful tool for wheat breeders worldwide.  相似文献   

14.
Zoysiagrass (Zoysia spp.), belonging to the genus Zoysia in the subfamily Chloridoideae, is widely used in domestic lawns, sports fields and as forage. We constructed high‐density genetic maps of Zoysia japonica using a restriction site‐associated DNA sequencing (RAD‐Seq) approach and an F1 mapping population derived from a cross between ‘Carrizo’ and ‘El Toro’. Two linkage maps were constructed, one for each of the parents. A map consisting of 2408 RAD markers distributed on 21 linkage groups was constructed for ‘Carrizo’. Another map with 1230 RAD markers mapped on 20 linkage groups was constructed for ‘El Toro’. The average distance between adjacent markers of the two maps was at 0.56 and 1.4 cM, respectively. Comparative genomics analysis was carried out among zoysiagrass, rice and sorghum genomes and a highly conserved collinearity in the gene order was observed among the three genomes. Chromosome collinearity was disrupted at centromeric regions for each chromosome pair between zoysiagrass and sorghum genomes. However, no obvious synteny gaps were observed across the centromeric regions between zoysiagrass and rice genomes. Two homologous chromosomes for each of the 10 sorghum chromosomes were found in the zoysiagrass genome, indicating an allotetraploid origin for zoysiagrass. The reduction of the basic chromosome number from 12 to 10 in chloridoids and panicoids took place via independent single‐step nested chromosome fusion events after the two subfamilies diverged from a common ancestor. The genetic maps will assist in genome sequence assembly, targeted gene isolation and comparative genomic analyses among grasses.  相似文献   

15.
In a de novo genotyping‐by‐sequencing (GBS) analysis of short, 64‐base tag‐level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag‐level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635‐line diversity panel were used to infer chromosome‐level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high‐resolution genome analysis and genomic selection in oats. A combined genome‐wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component‐based genome‐wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS‐derived markers facilitate genome analysis and genomic selection in oat.  相似文献   

16.
The leaf resemblance of Kallima (Nymphalidae) butterflies is an important ecological adaptive mechanism that increases their survival. However, the genetic mechanism underlying ecological adaptation remains unclear owing to a dearth of genomic information. Here, we determined the karyotype (n = 31) of the dead‐leaf butterfly Kallima inachus, and generated a high‐quality, chromosome‐level assembly (568.92 Mb; contig N50: 19.20 Mb). We also identified candidate Z and W chromosomes. To our knowledge, this is the first study to report on these aspects of this species. In the assembled genome, 15,309 protein‐coding genes and 49.86% repeat elements were annotated. Phylogenetic analysis showed that K. inachus diverged from Melitaea cinxia (no leaf resemblance), both of which are in Nymphalinae, around 40 million years ago. Demographic analysis indicated that the effective population size of K. inachus decreased during the last interglacial period in the Pleistocene. The wings of adults with the pigmentary gene ebony knocked out using CRISPR/Cas9 showed phenotypes in which the orange dorsal region and entire ventral surface darkened, suggesting its vital role in the ecological adaption of dead‐leaf butterflies. Our results provide important genome resources for investigating the genetic mechanism underlying protective resemblance in dead‐leaf butterflies and insights into the molecular basis of protective coloration.  相似文献   

17.
18.
Die‐back disease caused by Phomopsis (Diaporthe) azadirachtae is the devastating disease of Azadirachta indica. Accurate identification of P. azadirachtae is always problematic due to morphological plasticity and delayed appearance of conidia. A species‐specific PCR‐based assay was developed for rapid and reliable identification of P. azadirachtae by designing a species‐specific primer‐targeting ITS region of P. azadirachtae isolates. The assay was validated with DNA isolated from different Phomopsis species and other fungal isolates. The PCR assay amplified 313‐bp product from all the isolates of P. azadirachtae and not from any other Phomopsis species or any genera indicating its specificity. The assay successfully detected the pathogen DNA in naturally and artificially infected neem seeds and twigs indicating its applicability in seed quarantine and seed health testing. The sensitivity of the assay was 100 fg when genomic DNA of all isolates was analysed. The PCR‐based assay was 92% effective in comparison with seed plating technique in detecting the pathogen. This is the first report on the development of species‐specific PCR assay for identification and detection of P. azadirachtae. Thus, PCR‐based assay developed is very specific, rapid, confirmatory and sensitive tool for detection of pathogen P. azadirachtae at early stages.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号