首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Proteins that specifically bind double-stranded RNA (dsRNA) are involved in the regulation of cellular signaling events and gene expression, and are characterized by a conserved dsRNA-binding motif (dsRBM). Here we report the biochemical properties of nine such gene products, each containing one or two dsRBMs: four ArabidopsisDicer-like proteins (DCL1-4), ArabidopsisHYL1 and four of its homologs (DRB2, DRB4, DRB5 and OsDRB1). DCL1, DCL3, HYL1 and the four HYL1 homologs exhibit significant dsRNA-binding activity, indicating that these proteins are involved in RNA metabolism. The dsRBMs from dsRBM-containing proteins (dsRBPs) also function as a protein–protein interaction domain and homo- and heterodimerization are essential for biological functioning of these proteins. We show that DRB4 interacts specifically with DCL4, and HYL1 most strongly interacts with DCL1. These results indicate that each HYL1/DRB family protein interacts with one specific partner among the four Dicer-like proteins. Localization studies using GFP fusion proteins demonstrate that DCL1, DCL4, HYL1 and DRB4 localize in the nucleus, while DRB2 is present in the cytoplasm. Subcellular localizations of HYL1, DRB4, DCL1 and DCL4 further strengthen the notion that HYL1 and DCL1, and DRB4 and DCL4, exist as complexes. The presented data suggest that each member of the HYL1/DRB protein family may individually modulate Dicer function through heterodimerization with a Dicer-like protein in vivo.  相似文献   

4.
5.
MicroRNA (miRNA) plays an important role in the control of gene expression. HYPONASTIC LEAVES1 (HYL1) is a double-stranded RNA-binding protein that forms a complex with DICER-LIKE1 (DCL1) and SERRATE (SE) to process primary miRNA (pri-miRNA) into mature miRNA. Although HYL1 has been shown to partner with DCL1 to enhance miRNA accuracy, the mechanism by which HYL1 selects the DCL1-targeted cleavage sites in pri-miRNA has remained unknown. By mutagenesis of HYL1 and analysis of in vivo pri-miRNA processing, we investigated the role of HYL1 in pri-miRNA cleavage. HYL1 forms homodimers in which the residues Gly147 and Leu165 in the dsRBD2 domain are shown to be critical. Disruption of HYL1 homodimerization causes incorrect cleavage at sites in pri-miRNA without interrupting the interaction of HYL1 with DCL1 and accumulation of pri-miRNAs in HYL1/pri-miRNA complexes, leading to a reduction in the efficiency and accuracy of miRNAs that results in strong mutant phenotypes of the plants. HYL1 homodimers may function as a molecular anchor for DCL1 to cleave at a distance from the ssRNA–dsRNA junction in pri-miRNA. These results suggest that HYL1 ensures the correct selection of pri-miRNA cleavage sites through homodimerization and thus contributes to gene silencing and plant development.  相似文献   

6.
7.
8.
9.
10.
Etiolated seedlings frequently display a hypocotyl or epicotyl hook which opens on exposure to light. Ethylene has been shown to be necessary for maintenance of the hook in a number of plants in darkness. We investigated the interaction of ethylene and light in the regulation of hypocotyl hook opening in Arabidopsis thaliana . We found that hooks of Arabidopsis open in response to continuous red, far-red or blue light in the presence of up to 100 μl l−1 ethylene. Thus a change in sensitivity to ethylene is likely to be responsible for hook opening in Arabidopsis, rather than a decrease in ethylene production in hook tissues. We used photomorphogenic mutants of Arabidopsis to demonstrate the involvement of both blue light and phytochrome photosensory systems in light-induced hook opening in the presence of ethylene. In addition we used ethylene mutants and inhibitors of ethylene action to investigate the role of ethylene in hook maintenance in seedlings grown in light and darkness.  相似文献   

11.
By screening suppressor mutants of the hy2 mutation of Arabidopsis thaliana , two dominant photomorphogenic mutants, shy1-1D and shy2-1D , for two genetic loci designated as SHY1 and SHY2 ( s uppressor of hy 2 mutation) have been isolated. Both of these non-allelic, extragenic suppressor mutations of hy2 are located on chromosome 1 of the Arabidopsis genome. Both mutations suppress the elongated hypocotyl phenotype of hy2 by light-independent inhibition of hypocotyl growth as well as by increasing the effectiveness of light inhibition of hypocotyl elongation. The shy1-1D mutation is partially photomorphogenic in darkness with apical hook opening and reduced hypocotyl elongation. The shy2-1D mutant displays highly photomorphogenic characteristics in darkness such as true leaf development, cotyledon expansion, and extremely reduced hypocotyl growth. In regard to hypocotyl elongation, however, the shy2-1D mutation is still light sensitive. Examination of red/far-red light responses shows that the shy1-1D mutation suppresses the hypocotyl elongation of the hy2 mutation effectively in red light but not effectively in far-red light. The shy2-1D suppresses hypocotyl elongation of the hy2 mutation effectively in both red and far-red light. Both mutations can also suppress the early-flowering phenotype of hy2 and have a distinct pleiotropic effect on leaf development such as upward leaf rolling. The data obtained suggest that SHY1 and SHY2 represent a novel class of components involved in the photomorphogenic pathways of Arabidopsis . This is the first report on the identification of dominant mutations in the light signal transduction pathway of plants.  相似文献   

12.
13.
14.
15.
16.
17.
It has been reported that some double-stranded RNA (dsRNA) binding proteins interact with small RNA biogenesis-related RNase III enzymes. However, their biological significance is poorly understood. Here we examine the relationship between the Arabidopsis microRNA- (miRNA) producing enzyme DCL1 and the dsRNA binding protein HYL1. In the hyl1-2 mutant, the processing steps of miR163 biogenesis were partially impaired; increased accumulation of pri-miR163 and reduced accumulation of short pre-miR163 and mature miR163 as well as misplaced cleavages in the stem structure of pri-miR163 were detected. These misplaced cleavages were similar to those previously observed in the dcl1-9 mutant, in which the second double-stranded RNA binding domain of the protein was disrupted. An immunoprecipitation assay using Agrobacterium-mediated transient expression in Nicotiana benthamiana showed that HYL1 was able to form a complex with wild-type DCL1 protein, but not with the dcl1-9 mutant protein. We also examined miR164b and miR166a biogenesis in hyl1-2 and dcl1-9. Increased accumulation of pri-miRNAs and reduced accumulation of pre-miRNAs and mature miRNAs were detected. Misplaced cleavage on pri-miR164b was observed only in dcl1-9 but not in hyl1-2, whereas not on pri-miR166a in either mutant. These results indicate that HYL1 has a function in assisting efficient and precise cleavage of pri-miRNA through interaction with DCL1.  相似文献   

18.
19.
Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that SE is integral to pri-miRNA processing by DCL1. SE stimulates DCL1 cleavage of the pri-miRNA in an ionic strength-dependent manner. SE uses its N-terminal domain to bind to RNA and requires both N-terminal and ZnF domains to bind to DCL1. However, when DCL1 is bound to RNA, the interaction with the ZnF domain of SE becomes indispensible and stimulates the activity of DCL1 without requiring SE binding to RNA. Our results suggest that the interactions among SE, DCL1 and RNA are a potential point for regulating pri-miRNA processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号