首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Z  Li Q  Li Z  Staswick PE  Wang M  Zhu Y  He Z 《Plant physiology》2007,145(2):450-464
Salicylic acid (SA) plays a central role in plant disease resistance, and emerging evidence indicates that auxin, an essential plant hormone in regulating plant growth and development, is involved in plant disease susceptibility. GH3.5, a member of the GH3 family of early auxin-responsive genes in Arabidopsis (Arabidopsis thaliana), encodes a protein possessing in vitro adenylation activity on both indole-3-acetic acid (IAA) and SA. Here, we show that GH3.5 acts as a bifunctional modulator in both SA and auxin signaling during pathogen infection. Overexpression of the GH3.5 gene in an activation-tagged mutant gh3.5-1D led to elevated accumulation of SA and increased expression of PR-1 in local and systemic tissues in response to avirulent pathogens. In contrast, two T-DNA insertional mutations of GH3.5 partially compromised the systemic acquired resistance associated with diminished PR-1 expression in systemic tissues. The gh3.5-1D mutant also accumulated high levels of free IAA after pathogen infection and impaired different resistance-gene-mediated resistance, which was also observed in the GH3.6 activation-tagged mutant dfl1-D that impacted the auxin pathway, indicating an important role of GH3.5/GH3.6 in disease susceptibility. Furthermore, microarray analysis showed that the SA and auxin pathways were simultaneously augmented in gh3.5-1D after infection with an avirulent pathogen. The SA pathway was amplified by GH3.5 through inducing SA-responsive genes and basal defense components, whereas the auxin pathway was derepressed through up-regulating IAA biosynthesis and down-regulating auxin repressor genes. Taken together, our data reveal novel regulatory functions of GH3.5 in the plant-pathogen interaction.  相似文献   

2.
3.
4.
Auxin is a key plant growth regulator that also impacts plant–pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole‐3‐acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector‐triggered immunity was active in YUC1‐overexpressing plants, and we observed only minor effects on SA levels and SA‐mediated responses. Furthermore, a plant line carrying both the YUC1‐overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA‐mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA‐mediated defenses.  相似文献   

5.
Cytokinin (CK) inhibits adventitious root (AR) formation in stem cuttings. Little is known, however, about the mechanism underlying the inhibitory effect. In this study, 2 mg l?1 of exogenous 6‐benzyl adenine (6‐BA) was administered to 3 and 7‐day‐old apple rootstocks ‘M.26’ cuttings (3 and 7 days 6‐BA) by transferring them from a rooting medium containing indole‐3‐butanoic acid to the medium containing 6‐BA. Anatomical and morphological observations revealed that the exogenous application of 6‐BA inhibited primordia formation in the 3 days 6‐BA but not the 7 days 6‐BA group. The concentration of auxin (IAA), the ratios of IAA/CK and IAA/abscisic acid were lower in 3 days 6‐BA than in 7 days 6‐BA. Expression analysis of genes known to be associated with AR formation was also analyzed. In the 3 days 6‐BA group, high level of CK inhibited the synthesis and transport of auxin, as a result, low endogenous auxin level suppressed the auxin signaling pathway genes, as were other AR development and cell cycle related genes; all of which had an inhibitory impact on AR primordium formation. On the contrary, low CK level in the 7 days 6‐BA, reduced the inhibitory impact on auxin levels, leading to an upregulated expression of genes known to promote AR primordia formation. Collectively, our data indicated that 3–7 days is the time period in which AR primordia formation occurs in cuttings of ‘M.26’ and that the inhibition of AR development by CK is due to the suppression of AR primordia development over 3–7 days period after culturing in rooting medium.  相似文献   

6.
7.
Sugar regulates a variety of genes and controls plant growth and development similarly to phytohormones. As part of a screen for Arabidopsis mutants with defects in sugar-responsive gene expression, we identified a loss-of-function mutation in the HOOKLESS1 (HLS1) gene. HLS1 was originally identified to regulate apical hook formation of dark-grown seedlings (Lehman et al., 1996, Cell 85: 183-194). In hls1, sugar-induced gene expression in excised leaf petioles was more sensitive to exogenous sucrose than that in the wild type. Exogenous IAA partially repressed sugar-induced gene expression and concomitantly activated some auxin response genes such as AUR3 encoding GH3-like protein. The repression and the induction of gene expression by auxin were attenuated and enhanced, respectively, by the hls1 mutation. These results suggest that HLS1 plays a negative role in sugar and auxin signaling. Because AUR3 GH3-like protein conjugates free IAA to amino acids (Staswick et al., 2002, Plant Cell 14: 1405-1415; Staswick et al., 2005, Plant Cell 17: 616-627), enhanced expression of GH3-like genes would result in a decrease in the free IAA level. Indeed, hls1 leaves accumulated a reduced level of free IAA, suggesting that HLS1 may be involved in negative feedback regulation of IAA homeostasis through the control of GH3-like genes. We discuss the possible mechanisms by which HLS1 is involved in auxin signaling for sugar- and auxin-responsive gene expression and in IAA homeostasis.  相似文献   

8.
9.
Ding X  Cao Y  Huang L  Zhao J  Xu C  Li X  Wang S 《The Plant cell》2008,20(1):228-240
New evidence suggests a role for the plant growth hormone auxin in pathogenesis and disease resistance. Bacterial infection induces the accumulation of indole-3-acetic acid (IAA), the major type of auxin, in rice (Oryza sativa). IAA induces the expression of expansins, proteins that loosen the cell wall. Loosening the cell wall is key for plant growth but may also make the plant vulnerable to biotic intruders. Here, we report that rice GH3-8, an auxin-responsive gene functioning in auxin-dependent development, activates disease resistance in a salicylic acid signaling- and jasmonic acid signaling-independent pathway. GH3-8 encodes an IAA-amino synthetase that prevents free IAA accumulation. Overexpression of GH3-8 results in enhanced disease resistance to the rice pathogen Xanthomonas oryzae pv oryzae. This resistance is independent of jasmonic acid and salicylic acid signaling. Overexpression of GH3-8 also causes abnormal plant morphology and retarded growth and development. Both enhanced resistance and abnormal development may be caused by inhibition of the expression of expansins via suppressed auxin signaling.  相似文献   

10.
11.
Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild‐type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.  相似文献   

12.
The formation of auxin conjugates is one of the important regulatory mechanisms for modulating IAA action. Several auxin-responsive GH3 genes encode IAA-amide synthetases that are involved in the maintenance of hormonal homeostasis by conjugating excess IAA to amino acids. Recently, the data have revealed novel regulatory functions of several GH3 proteins in plant growth, organ development, fruit ripening, light signaling, abiotic stress tolerance and plant defense responses. Indole-3-acetyl-aspartate (IAA-Asp) synthetase catalyzing IAA conjugation to aspartic acid in immature seeds of pea (Pisum sativum L.) was purified and characterized during our previous investigations. In this study, we examined the effect of auxin and other plant hormones (ABA, GA, kinetin, JA, MeJA, SA), different light conditions (red, far-red, blue, white light), and auxinic herbicides (2,4-D, Dicamba, Picloram) on the expression of a putative GH3 gene and IAA-amide synthesizing activity in 10-d-old pea seedlings. Quantitative RT-PCR analysis indicated that the PsGH3-5 gene, weakly expressed in control sample, was visibly induced in response to all plant hormones, different light wavelengths and the auxinic herbicides tested. Protein A immunoprecipitation/gel blot analysis using anti-AtGH3.5 antibodies revealed a similar pattern of changes on the protein levels in response to all treatments. IAA-amide synthetase activity determined with aspartate as a substrate, not detectable in control seedlings, was positively affected by a majority of treatments. Based on these results, we suggest that PsGH3-5 may control the growth and development of pea plants in a way similar to the known GH3 genes from other plant species.  相似文献   

13.
The crosstalk between auxin and cytokinin (CK) is important for plant growth and development, although the underlying molecular mechanisms remain unclear. Here, we describe the isolation and characterization of a mutant of Arabidopsis Cytokinin-induced Root Curling 6 (CKRC6), an allele of ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1 (ASA1) that encodes the á-subunit of AS in tryptophan (Trp) biosynthesis. The ckrc6 mutant exhibits root gravitropic defects and insensitivity to both CK and the ethylene precursor 1-aminocyclopropane-1-carboxylicacid (ACC) in primary root growth. These defects can be rescued by exogenous indole-3-acetic acid (IAA) or tryptophan (Trp) supplementation. Furthermore, our results suggest that the ckrc6 mutant has decreased IAA content, differential expression patterns of auxin biosynthesis genes and CK biosynthesis isopentenyl transferase (IPT) genes in comparison to wild type. Collectively, our study shows that auxin controls CK biosynthesis based on that CK sensitivity is altered in most auxin-resistant mutants and that CKs promote auxin biosynthesis but inhibit auxin transport and response. Our results also suggest that CKRC6/ASA1 may be located at an intersection of auxin, CK and ethylene metabolism and/or signaling.  相似文献   

14.
15.
16.
Auxin plays a pivotal role in many facets of plant development. It acts by inducing the interaction between auxin‐responsive [auxin (AUX)/indole‐3‐acetic acid (IAA)] proteins and the ubiquitin protein ligase SCFTIR to promote the degradation of the AUX/IAA proteins. Other cofactors and chaperones that participate in auxin signaling remain to be identified. Here, we characterized rice (Oryza sativa) plants with mutations in a cyclophilin gene (OsCYP2). cyp2 mutants showed defects in auxin responses and exhibited a variety of auxin‐related growth defects in the root. In cyp2 mutants, lateral root initiation was blocked after nuclear migration but before the first anticlinal division of the pericycle cell. Yeast two‐hybrid and in vitro pull‐down results revealed an association between OsCYP2 and the co‐chaperone Suppressor of G2 allele of skp1 (OsSGT1). Luciferase complementation imaging assays further supported this interaction. Similar to previous findings in an Arabidopsis thaliana SGT1 mutant (atsgt1b), degradation of AUX/IAA proteins was retarded in cyp2 mutants treated with exogenous 1‐naphthylacetic acid. Our results suggest that OsCYP2 participates in auxin signal transduction by interacting with OsSGT1.  相似文献   

17.
18.
19.
20.
To characterize the biological function of microRNA miR393 in tobacco, AtmiR393a gene was isolated from Arabidopsis using PCR and fused downstream to CaMV 35S promoter to make a plant expression construct 35S::AtmiR393a. The resultant construct was then introduced into tobacco with Agrobacterium-mediated transformation. Transgenic tobacco lines ectopically overexpressing AtmiR393a were successfully obtained. Transgenic lines L1 (a weak line), L2 (a middle line), and L3 (a strong line) were confirmed using stem-loop RT-PCRs and used to characterize the function of miR393 in tobacco. The results showed that L1, L2, and L3 exhibited reduced plant size and root length related to the WT control. In addition, seedling growth was less sensitive to IAA treatment and NaCl stress in three transgenic lines than the non-transgenic WT control. Furthermore, L1, L2, and L3 showed reduced phototropism relative to WT. Therefore, the biological function of miR393 is conserved in tobacco, just like in Arabidopsis. It regulates plant growth and development as well as the responses to environmental cues by influencing auxin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号