首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingolipids are membrane lipids globally required for eukaryotic life. The sphingolipid content varies among endomembranes with pre‐ and post‐Golgi compartments being poor and rich in sphingolipids, respectively. Due to this different sphingolipid content, pre‐ and post‐Golgi membranes serve different cellular functions. The basis for maintaining distinct subcellular sphingolipid levels in the presence of membrane trafficking and metabolic fluxes is only partially understood. Here, we describe a homeostatic regulatory circuit that controls sphingolipid levels at the trans‐Golgi network (TGN). Specifically, we show that sphingomyelin production at the TGN triggers a signalling pathway leading to PtdIns(4)P dephosphorylation. Since PtdIns(4)P is required for cholesterol and sphingolipid transport to the trans‐Golgi network, PtdIns(4)P consumption interrupts this transport in response to excessive sphingomyelin production. Based on this evidence, we envisage a model where this homeostatic circuit maintains a constant lipid composition in the trans‐Golgi network and post‐Golgi compartments, thus counteracting fluctuations in the sphingolipid biosynthetic flow.  相似文献   

2.
Lipid transport proteins at membrane contact sites, where two organelles are closely apposed, play key roles in trafficking lipids between cellular compartments while distinct membrane compositions for each organelle are maintained. Understanding the mechanisms underlying non‐vesicular lipid trafficking requires characterization of the lipid transporters residing at contact sites. Here, we show that the mammalian proteins in the lipid transfer proteins anchored at a membrane contact site (LAM) family, called GRAMD1a‐c, transfer sterols with similar efficiency as the yeast orthologues, which have known roles in sterol transport. Moreover, we have determined the structure of a lipid transfer domain of the yeast LAM protein Ysp2p, both in its apo‐bound and sterol‐bound forms, at 2.0 Å resolution. It folds into a truncated version of the steroidogenic acute regulatory protein‐related lipid transfer (StART) domain, resembling a lidded cup in overall shape. Ergosterol binds within the cup, with its 3‐hydroxy group interacting with protein indirectly via a water network at the cup bottom. This ligand binding mode likely is conserved for the other LAM proteins and for StART domains transferring sterols.  相似文献   

3.
The extended synaptotagmins (E‐Syts) are endoplasmic reticulum (ER) proteins that bind the plasma membrane (PM) via C2 domains and transport lipids between them via SMP domains. E‐Syt1 tethers and transports lipids in a Ca2+‐dependent manner, but the role of Ca2+ in this regulation is unclear. Of the five C2 domains of E‐Syt1, only C2A and C2C contain Ca2+‐binding sites. Using liposome‐based assays, we show that Ca2+ binding to C2C promotes E‐Syt1‐mediated membrane tethering by releasing an inhibition that prevents C2E from interacting with PI(4,5)P2‐rich membranes, as previously suggested by studies in semi‐permeabilized cells. Importantly, Ca2+ binding to C2A enables lipid transport by releasing a charge‐based autoinhibitory interaction between this domain and the SMP domain. Supporting these results, E‐Syt1 constructs defective in Ca2+ binding in either C2A or C2C failed to rescue two defects in PM lipid homeostasis observed in E‐Syts KO cells, delayed diacylglycerol clearance from the PM and impaired Ca2+‐triggered phosphatidylserine scrambling. Thus, a main effect of Ca2+ on E‐Syt1 is to reverse an autoinhibited state and to couple membrane tethering with lipid transport.  相似文献   

4.
Of many lipid transfer proteins identified, all have been implicated in essential cellular processes, but the activity of none has been demonstrated in intact cells. Among these, phosphatidylinositol transfer proteins (PITP) are of particular interest as they can bind to and transfer phosphatidylinositol (PtdIns)--the precursor of important signalling molecules, phosphoinositides--and because they have essential functions in neuronal development (PITPalpha) and cytokinesis (PITPbeta). Structural analysis indicates that, in the cytosol, PITPs are in a 'closed' conformation completely shielding the lipid within them. But during lipid exchange at the membrane, they must transiently 'open'. To study PITP dynamics in intact cells, we chemically targeted their C95 residue that, although non-essential for lipid transfer, is buried within the phospholipid-binding cavity, and so, its chemical modification prevents PtdIns binding because of steric hindrance. This treatment resulted in entrapment of open conformation PITPs at the membrane and inactivation of the cytosolic pool of PITPs within few minutes. PITP isoforms were differentially inactivated with the dynamics of PITPbeta faster than PITPalpha. We identify two tryptophan residues essential for membrane docking of PITPs.  相似文献   

5.
The network of proteins that orchestrate the distribution of cholesterol among cellular organelles is not fully characterized. We previously proposed that oxysterol‐binding protein (OSBP) drives cholesterol/PI4P exchange at contact sites between the endoplasmic reticulum (ER) and the trans‐Golgi network (TGN). Using the inhibitor OSW‐1, we report here that the sole activity of endogenous OSBP makes a major contribution to cholesterol distribution, lipid order, and PI4P turnover in living cells. Blocking OSBP causes accumulation of sterols at ER/lipid droplets at the expense of TGN, thereby reducing the gradient of lipid order along the secretory pathway. OSBP consumes about half of the total cellular pool of PI4P, a consumption that depends on the amount of cholesterol to be transported. Inhibiting the spatially restricted PI4‐kinase PI4KIIIβ triggers large periodic traveling waves of PI4P across the TGN. These waves are cadenced by long‐range PI4P production by PI4KIIα and PI4P consumption by OSBP. Collectively, these data indicate a massive spatiotemporal coupling between cholesterol transport and PI4P turnover via OSBP and PI4‐kinases to control the lipid composition of subcellular membranes.  相似文献   

6.
When one person wants to communicate securely with another, he/she should contact the other person directly. This rule applies not only to human society, but also to the intracellular micro‐society. In the past two decades, it has become increasingly clear that the sub‐organelle regions called membrane contact sites (MCSs) are pivotal for inter‐organelle transport of lipids in cells, as highlighted in the thematic review series “Interorganelle trafficking of lipids” held in Traffic in 2014–2015. In this commentary, we will describe how the currently prevailing model for lipid trafficking at MCSs was generated, and comment on three important issues that have not been explored: (a1) the principles guiding the generation of an asymmetrical inter‐organelle flow of lipids in cells, (b2) the advantages in lipid trafficking at organelle contacts, and (c3) the dynamic network of inter‐organelle lipid trafficking.  相似文献   

7.
The DrrA protein of Legionella pneumophila is involved in mistargeting of endoplasmic reticulum‐derived vesicles to Legionella‐containing vacuoles through recruitment of the small GTPase Rab1. To this effect, DrrA binds specifically to phosphatidylinositol 4‐phosphate (PtdIns(4)P) lipids on the cytosolic surface of the phagosomal membrane shortly after infection. In this study, we present the atomic structure of the PtdIns(4)P‐binding domain of a protein (DrrA) from a human pathogen. A detailed kinetic investigation of its interaction with PtdIns(4)P reveals that DrrA binds to this phospholipid with, as yet unprecedented, high affinity, suggesting that DrrA can sense a very low abundance of the lipid.  相似文献   

8.
Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with specific sets of components such as lipid rafts and TEMs (tetraspanin‐enriched microdomains). An increasing number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them, association of HIV‐1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane) is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain organization and the HIV‐1 particle assembly process. Microdomain association during virus particle assembly may also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to two post‐assembly events, i.e., inhibition of virus release by a raft‐associated protein BST‐2/tetherin and cell‐to‐cell HIV‐1 transmission at virological synapses.  相似文献   

9.
Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.  相似文献   

10.
StAR‐related lipid transfer domain‐3 (STARD3) is a sterol‐binding protein that creates endoplasmic reticulum (ER)–endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill‐defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3‐mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER–endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER‐anchored partner, Vesicle‐associated membrane protein‐associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER–endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.  相似文献   

11.
Phosphatidylinositol 4‐phophate (PtdIns(4)P) is an essential signaling molecule in the Golgi body, endosomal system, and plasma membrane and functions in the regulation of membrane trafficking, cytoskeletal organization, lipid metabolism and signal transduction pathways, all mediated by direct interaction with PtdIns(4)P‐binding proteins. PtdIns(4)P was recently reported to have functional roles in autophagosome biogenesis. LC3 and GABARAP subfamilies and a small GTP‐binding protein, Rab7, are localized on autophagosomal membranes and participate at each stage of autophagosome formation and maturation. To better understand autophagosome biogenesis, it is essential to determine the localization of PtdIns(4)P and to examine its relationship with LC3 and GABARAP subfamilies and Rab7. To analyze PtdIns(4)P distribution, we used an electron microscopy technique that labels PtdIns(4)P on the freeze‐fracture replica of intracellular biological membranes, which minimizes the possibility of artificial perturbation because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P is localized on the cytoplasmic, but not the luminal (exoplasmic), leaflet of the inner and outer membranes of autophagosomes. Double labeling revealed that PtdIns(4)P mostly colocalizes with Rab7, but not with LC3B, GABARAP, GABARAPL1 and GABARAPL2. Rab7 plays essential roles in autophagosome maturation and in autophagosome‐lysosome fusion events. We suggest that PtdIns(4)P is localized to the cytoplasmic leaflet of the autophagosome at later stages, which may illuminate the importance of PtdIns(4)P at the later stages of autophagosome formation.   相似文献   

12.
Synaptotagmin-like mitochondrial-lipid-binding (SMP) domain proteins are evolutionarily conserved family of proteins in eukaryotes that localize between the endoplasmic reticulum (ER) and either the plasma membrane (PM) or other organelles. They are involved in tethering of these membrane contact sites through interaction with other proteins and membrane lipids. Recent structural and biochemical studies have demonstrated that SMP domain proteins transport a wide variety of lipid species by the ability of the SMP domain to harbor lipids through its unique hydrophobic cavity. Growing evidence suggests that SMP domain proteins play critical roles in cell physiology by their actions at membrane contact sites. In this review, we summarize the functions of SMP domain proteins and their direct roles in lipid transport across different membrane compartments. We also discuss their physiological functions in organisms as well as “bypass” pathways that act in parallel with SMP domain proteins at membrane contact sites.  相似文献   

13.
Phox‐homology (PX) domains target proteins to the organelles of the secretary and endocytic systems by binding to phosphatidylinositol phospholipids (PIPs). Among all the structures of PX domains that have been solved, only three have been solved in a complex with the main physiological ligand: PtdIns3P. In this work, molecular dynamic simulations have been used to explore the structure and dynamics of the p40phox–PX domain and the SNX17–PX domain and their interaction with membrane‐bound PtdIns3P. In the simulations, both PX domains associated spontaneously with the membrane‐bound PtdIns3P and formed stable complexes. The interaction between the p40phox–PX domain and PtdIns3P in the membrane was found to be similar to the crystal structure of the p40phox–PX–PtdIns3P complex that is available. The interaction between the SNX17–PX domain and PtdIns3P was similar to that observed in the p40phox–PX–PtdIns3P complex; however, some residues adopted different orientations. The simulations also showed that nonspecific interactions between the β1–β2 loop and the membrane play an important role in the interaction of membrane bound PtdIns3P and different PX domains. The behaviour of unbound PtdIns3P within a 2‐oleoyl‐1‐palmitoyl‐sn‐glycero‐3‐phosphocholine (POPC) membrane environment was also examined and compared to the available experimental data and simulation studies of related molecules. Proteins 2014; 82:2332–2342. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Oxysterol‐binding protein (OSBP) localizes to endoplasmic reticulum (ER)‐Golgi contact sites where it transports cholesterol and phosphatidylinositol 4‐phosphate (PI‐4P), and activates lipid transport and biosynthetic activities. The PI‐4P phosphatase Sac1 cycles between the ER and Golgi apparatus where it potentially regulates OSBP activity. Here we examined whether the ER‐Golgi distribution of endogenous or ectopically expressed Sac1 influences OSBP activity. OSBP and Sac1 co‐localized at apparent ER‐Golgi contact sites in response to 25‐hydroxycholesterol (25OH), cholesterol depletion and p38 MAPK inhibitors. A Sac1 mutant that is unable to exit the ER did not localize with OSBP, suggesting that sterol perturbations cause Sac1 transport to the Golgi apparatus. Ectopic expression of Sac1 in the ER or Golgi apparatus, or Sac1 silencing, did not affect OSBP localization to ER‐Golgi contact sites, OSBP‐dependent activation of sphingomyelin synthesis, or cholesterol esterification in the ER. p38 MAPK inhibition and retention of Sac1 in the Golgi apparatus also caused OSBP phosphorylation and OSBP‐dependent activation of sphingomyelin synthesis at ER‐Golgi contacts. These results demonstrate that Sac1 expression in either the ER or Golgi apparatus has a minimal impact on the PI‐4P that regulates OSBP activity or recruitment to contact sites.   相似文献   

15.
The cell plasma membrane (PM) is a highly dynamic and heterogeneous lipid environment, driven by complex hydrophobic and electrostatic interactions among the hundreds of types of lipid species. Although the biophysical processes governing lipid lateral segregation in the cell PM have been established in vitro, biological implications of lipid heterogeneity are poorly understood. Of particular interest is how membrane proteins potentially utilize transient spatial clustering of PM lipids to regulate function. This review focuses on a lipid‐anchored small GTPase K‐Ras as an example to explore how its C‐terminal membrane‐anchoring domain, consisting of a contiguous hexa‐lysine polybasic domain and an adjacent farnesyl anchor, possesses a complex coding mechanism for highly selective lipid sorting on the PM. How this lipid specificity modulates K‐Ras signal transmission will also be discussed.   相似文献   

16.
Phosphatidylinositol 3,5‐bisphosphate (PtdIns(3,5)P2) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze‐fracture electron microscopy. GST‐ATG18‐4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3‐phosphate (PtdIns(3)P) was blocked by an excess of the p40phox PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)‐deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP‐deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid‐disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP‐deficient, PtdIns(3)P‐rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5‐ and RAB7‐positive endosome/lysosomes of the tubulo‐vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2‐rich and ‐deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality.   相似文献   

17.
Membranes of mammalian subcellular organelles contain defined amounts of specific phospholipids that are required for normal functioning of proteins in the membrane. Despite the wide distribution of most phospholipid classes throughout organelle membranes, the site of synthesis of each phospholipid class is usually restricted to one organelle, commonly the endoplasmic reticulum (ER). Thus, phospholipids must be transported from their sites of synthesis to the membranes of other organelles. In this article, pathways and subcellular sites of phospholipid synthesis in mammalian cells are summarized. A single, unifying mechanism does not explain the inter‐organelle transport of all phospholipids. Thus, mechanisms of phospholipid transport between organelles of mammalian cells via spontaneous membrane diffusion, via cytosolic phospholipid transfer proteins, via vesicles and via membrane contact sites are discussed. As an example of the latter mechanism, phosphatidylserine (PS) is synthesized on a region of the ER (mitochondria‐associated membranes, MAM) and decarboxylated to phosphatidylethanolamine in mitochondria. Some evidence is presented suggesting that PS import into mitochondria occurs via membrane contact sites between MAM and mitochondria. Recent studies suggest that protein complexes can form tethers that link two types of organelles thereby promoting lipid transfer. However, many questions remain about mechanisms of inter‐organelle phospholipid transport in mammalian cells.  相似文献   

18.
Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria.This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

19.
细胞膜局部区域可形成富含饱和脂质、胆固醇、鞘脂的脂筏域作为其信号转导调控平台。传统实验手段在研究脂筏及其功能时受到系统复杂度高及区域结构瞬时性强等制约。近年来,分子动力学模拟技术为细胞膜的组织原则提供了重要的理论支撑,从简单的单一组分模型到多组分系统转变,最终形成了越来越多的细胞膜仿真模型。其中,粗粒化模拟由于其简化模型,可大副拓展模拟体系的复杂程度与模拟时间,在细胞膜以及蛋白质-脂质相互作用相关研究中得到了广泛应用。本文采用MARTINI粗粒化力场模拟,构建了一种含有阴离子脂质磷脂酰肌醇二磷酸(phosphatidylinositol diphosphate, PIP2)的混合膜体系。模拟结果表明,该体系在适当温度及饱和度条件下,能自发分层形成脂筏域;膜厚度、膜组分分布、膜组分流动性等多种参数均表明,脂筏结构形成且符合其结构特征;少量PIP2添加不影响分层特性且PIP2对脂筏具有显著亲和性。此外,利用该模型以跨膜信号蛋白CD3ε为例研究了脂筏域体系中蛋白质-脂质相互作用。结果表明,PIP2-CD3ε胞内区相互作用可能是脂筏招募CD3ε的驱动力,且该过程可受钙离子调控。本工作体现了粗粒化模拟在仿真膜相关研究中的巨大优势及良好应用前景。  相似文献   

20.
There is substantial evidence for extensive nonvesicular sterol transport in cells. For example, lipid transfer by the steroidogenic acute regulator-related proteins (StarD) containing a StarT domain has been shown to involve several pathways of nonvesicular trafficking. Among the soluble StarT domain–containing proteins, StarD4 is expressed in most tissues and has been shown to be an effective sterol transfer protein. However, it was unclear whether the lipid composition of donor or acceptor membranes played a role in modulating StarD4-mediated transport. Here, we used fluorescence-based assays to demonstrate a phosphatidylinositol phosphate (PIP)-selective mechanism by which StarD4 can preferentially extract sterol from liposome membranes containing certain PIPs (especially, PI(4,5)P2 and to a lesser degree PI(3,5)P2). Monophosphorylated PIPs and other anionic lipids had a smaller effect on sterol transport. This enhancement of transport was less effective when the same PIPs were present in the acceptor membranes. Furthermore, using molecular dynamics (MD) simulations, we mapped the key interaction sites of StarD4 with PIP-containing membranes and identified residues that are important for this interaction and for accelerated sterol transport activity. We show that StarD4 recognizes membrane-specific PIPs through specific interaction with the geometry of the PIP headgroup as well as the surrounding membrane environment. Finally, we also observed that StarD4 can deform membranes upon longer incubations. Taken together, these results suggest a mechanism by which PIPs modulate cholesterol transfer activity via StarD4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号