首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multilocular silique is a desirable agricultural trait with great potential for the development of high‐yield varieties of Brassica. To date, no spontaneous or induced multilocular mutants have been reported in Brassica napus, which likely reflects its allotetraploid nature and the extremely low probability of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we present evidence for the efficient knockout of rapeseed homologues of CLAVATA3 (CLV3) for a secreted peptide and its related receptors CLV1 and CLV2 in the CLV signalling pathway using the CRISPR/Cas9 system and achieved stable transmission of the mutations across three generations. Each BnCLV gene has two copies located in two subgenomes. The multilocular phenotype can be recovered only in knockout mutations of both copies of each BnCLV gene, illustrating that the simultaneous alteration of multiple gene copies by CRISPR/Cas9 mutagenesis has great potential in generating agronomically important mutations in rapeseed. The mutagenesis efficiency varied widely from 0% to 48.65% in T0 with different single‐guide RNAs (sgRNAs), indicating that the appropriate selection of the sgRNA is important for effectively generating indels in rapeseed. The double mutation of BnCLV3 produced more leaves and multilocular siliques with a significantly higher number of seeds per silique and a higher seed weight than the wild‐type and single mutant plants, potentially contributing to increased seed production. We also assessed the efficiency of the horizontal transfer of Cas9/gRNA cassettes by pollination. Our findings reveal the potential for plant breeding strategies to improve yield traits in currently cultivated rapeseed varieties.  相似文献   

2.
3.
4.
Plant height and branch number are essential components of rapeseed plant architecture and are directly correlated with its yield. Presently, improvement of plant architecture is a major challenge in rapeseed breeding. In this study, we first verified that the two rapeseed BnaMAX1 genes had redundant functions resembling those of Arabidopsis MAX1, which regulates plant height and axillary bud outgrowth. Therefore, we designed two sgRNAs to edit these BnaMAX1 homologs using the CRISPR/Cas9 system. The T0 plants were edited very efficiently (56.30%–67.38%) at the BnaMAX1 target sites resulting in homozygous, heterozygous, bi‐allelic and chimeric mutations. Transmission tests revealed that the mutations were passed on to the T1 and T2 progeny. We also obtained transgene‐free lines created by the CRISPR/Cas9 editing, and no mutations were detected in potential off‐target sites. Notably, simultaneous knockout of all four BnaMAX1 alleles resulted in semi‐dwarf and increased branching phenotypes with more siliques, contributing to increased yield per plant relative to wild type. Therefore, these semi‐dwarf and increased branching characteristics have the potential to help construct a rapeseed ideotype. Significantly, the editing resources obtained in our study provide desirable germplasm for further breeding of high yield in rapeseed.  相似文献   

5.
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor‐bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R‐genes harbour more SNPs than variable genes. More nucleotide binding site‐leucine‐rich repeat (NBS‐LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics‐based improvement and improved disease resistance.  相似文献   

6.
Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.  相似文献   

7.
Engineered minichromosomes could be stably inherited and serve as a platform for simultaneously transferring and stably expressing multiple genes. Chromosomal truncation mediated by repeats of telomeric sequences is a promising approach for the generation of minichromosomes. In the present work, direct repetitive sequences of Arabidopsis telomere were used to study telomere‐mediated truncation of chromosomes in Brassica napus. Transgenes containing alien Arabidopsis telomere were successfully obtained, and Southern blotting and fluorescence in situ hybridization (FISH) results show that the transgenes resulted in successful chromosomal truncation in B. napus. In addition, truncated chromosomes were inherited at rates lower than that predicted by Mendelian rules. To determine the potential manipulations and applications of the engineered chromosomes, such as the stacking of multiple transgenes and the Cre/lox and FRT/FLP recombination systems, both amenable to genetic manipulations through site‐specific recombination in somatic cells, were tested for their ability to undergo recombination in B. napus. These results demonstrate that alien Arabidopsis telomere is able to mediate chromosomal truncation in B. napus. This technology would be feasible for chromosomal engineering and for studies on chromosome structure and function in B. napus.  相似文献   

8.
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole‐genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C‐genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.  相似文献   

9.
10.
11.
  • Melatonin has emerged as an essential molecule in plants, due to its role in defence against metal toxicity. Aluminium (Al) and cadmium (Cd) toxicity inhibit rapeseed seedling growth.
  • In this study, we applied different doses of melatonin (50 and 100 µm ) to alleviate Al (25 µm ) and Cd (25 µm ) stress in rapeseed seedlings. Results show that Al and Cd caused toxicity in rapeseed seedling, as evidenced by a decrease in height, biomass and antioxidant enzyme activity.
  • Melatonin increased the expression of melatonin biosynthesis‐related Brassica napus genes for caffeic acid O‐methyl transferase (BnCOMT) under Al and Cd stress. The genes BnCOMT‐1, BnCOMT‐5 and BnCOMT‐8 showed up‐regulated expression, while BnCOMT‐4 and BnCOMT‐6 were down‐regulated during incubation in water. Melatonin application increased the germination rate, shoot length, root length, fresh and dry weight of seedlings. Melatonin supplementation under Al and Cd stress increased superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, proline, chlorophyll and anthocyanin content, as well as photosynthesis rate. Both Cd and Al treatments significantly increased hydrogen peroxide and malondialdehyde levels in rapeseed seedlings, which were strictly counterbalanced by melatonin. Analysis of Cd and Al in different subcellular compartments showed that melatonin enhanced cell wall and soluble fractions, but reduced the vacuolar and organelle fractions in Al‐ and Cd‐treated seedlings.
  • These results suggest that melatonin‐induced improvements in antioxidant potential, biomass, photosynthesis rate and successive Cd and Al sequestration play a pivotal role in plant tolerance to Al and Cd stress. This mechanism may have potential implications in safe food production.
  相似文献   

12.
13.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   

14.
Seed size/weight is one of the key traits related to plant domestication and crop improvement. In rapeseed (Brassica napus L.) germplasm, seed weight shows extensive variation, but its regulatory mechanism is poorly understood. To identify the key mechanism of seed weight regulation, a systematic comparative study was performed. Genetic, morphological and cytological evidence showed that seed weight was controlled by maternal genotype, through the regulation of seed size mainly via cell number. The physiological evidence indicated that differences in the pod length might result in differences in pod wall photosynthetic area, carbohydrates and the final seed weight. We also identified two pleiotropic major quantitative trait loci that acted indirectly on seed weight via their effects on pod length. RNA‐seq results showed that genes related to pod development and hormones were significantly differentially expressed in the pod wall; genes related to development, cell division, nutrient reservoir and ribosomal proteins were all up‐regulated in the seeds of the large‐seed pool. Finally, we proposed a potential seed weight regulatory mechanism that is specific to rapeseed and novel in plants. The results demonstrate a causal link between the size of the pod (mother, source) and the seed (offspring, sink) in rapeseed, which provides novel insight into the maternal control of seed weight and will open a new research field in plants.  相似文献   

15.
The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum aestivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fertility gene Ms1, it is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Gladius, and several of the selected male‐sterile lines were potentially non‐transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in commercial wheat cultivars. This represents an important step towards capturing heterosis to improve wheat yields, through the production and use of hybrid seed on an industrial scale.  相似文献   

16.
Leucine‐rich repeat receptor‐like proteins (LRR‐RLPs) are highly adaptable parts of the signalling apparatus for extracellular detection of plant pathogens. Resistance to blackleg disease of Brassica spp. caused by Leptosphaeria maculans is largely governed by host race‐specific R‐genes, including the LRR‐RLP gene LepR3. The blackleg resistance gene Rlm2 was previously mapped to the same genetic interval as LepR3. In this study, the LepR3 locus of the Rlm2 Brassica napus line ‘Glacier DH24287’ was cloned, and B. napus transformants were analysed for recovery of the Rlm2 phenotype. Multiple B. napus, B. rapa and B. juncea lines were assessed for sequence variation at the locus. Rlm2 was found to be an allelic variant of the LepR3 LRR‐RLP locus, conveying race‐specific resistance to L. maculans isolates harbouring AvrLm2. Several defence‐related LRR‐RLPs have previously been shown to associate with the RLK SOBIR1 to facilitate defence signalling. Bimolecular fluorescence complementation (BiFC) and co‐immunoprecipitation of RLM2‐SOBIR1 studies revealed that RLM2 interacts with SOBIR1 of Arabidopsis thaliana when co‐expressed in Nicotiana benthamiana. The interaction of RLM2 with AtSOBIR1 is suggestive of a conserved defence signalling pathway between B. napus and its close relative A. thaliana.  相似文献   

17.
18.
As an increasing number of plant genome sequences become available, it is clear that gene content varies between individuals, and the challenge arises to predict the gene content of a species. However, genome comparison is often confounded by variation in assembly and annotation. Differentiating between true gene absence and variation in assembly or annotation is essential for the accurate identification of conserved and variable genes in a species. Here, we present the de novo assembly of the B. napus cultivar Tapidor and comparison with an improved assembly of the Brassica napus cultivar Darmor‐bzh. Both cultivars were annotated using the same method to allow comparison of gene content. We identified genes unique to each cultivar and differentiate these from artefacts due to variation in the assembly and annotation. We demonstrate that using a common annotation pipeline can result in different gene predictions, even for closely related cultivars, and repeat regions which collapse during assembly impact whole genome comparison. After accounting for differences in assembly and annotation, we demonstrate that the genome of Darmor‐bzh contains a greater number of genes than the genome of Tapidor. Our results are the first step towards comparison of the true differences between B. napus genomes and highlight the potential sources of error in future production of a B. napus pangenome.  相似文献   

19.
20.
Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox‐sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard‐cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in‐gel electrophoresis and isotope‐coded affinity tagging. In total, 65 and 118 potential redox‐responsive proteins were identified in ABA‐ and MeJA‐treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra‐molecular disulfide bonds. Most of the proteins fall into the functional groups of ‘energy’, ‘stress and defense’ and ‘metabolism’. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA‐ and MeJA‐treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non‐fermenting 1‐related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox‐regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号