首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
N‐glycosylation is a major modification of glycoproteins in eukaryotic cells. In Arabidopsis, great progress has been made in functional analysis of N‐glycan production, however there are few studies in monocotyledons. Here, we characterized a rice (Oryza sativa L.) osmogs mutant with shortened roots and isolated a gene that coded a putative mannosyl‐oligosaccharide glucosidase (OsMOGS), an ortholog of α‐glucosidase I in Arabidopsis, which trims the terminal glucosyl residue of the oligosaccharide chain of nascent peptides in the endoplasmic reticulum (ER). OsMOGS is strongly expressed in rapidly cell‐dividing tissues and OsMOGS protein is localized in the ER. Mutation of OsMOGS entirely blocked N‐glycan maturation and inhibited high‐mannose N‐glycan formation. The osmogs mutant exhibited severe defects in root cell division and elongation, resulting in a short‐root phenotype. In addition, osmogs plants had impaired root hair formation and elongation, and reduced root epidemic cell wall thickness due to decreased cellulose synthesis. Further analysis showed that auxin content and polar transport in osmogs roots were reduced due to incomplete N‐glycosylation of the B subfamily of ATP‐binding cassette transporter proteins (ABCBs). Our results demonstrate that involvement of OsMOGS in N‐glycan formation is required for auxin‐mediated root development in rice.  相似文献   

3.
采用传统的分离培养方法和分子生物学技术对我国高产杂交水稻(OryzasativaL.)金优611种子固有细菌进行研究,从而了解其中可培养细菌群落的多样性。对分离得到的91株细菌进行16SrDNA扩增、ARDRA分型和16SrDNA系统发育分析,结果表明,分离得到的91株细菌分属于10个属16个种。其中γ-变形杆菌(Gammaproteobacteria)(53.85%)占据优势地位,其次为α-变形杆菌(Alphaproteobacteria)(20.88%),其它分属放线菌门Actinobacteria(15.39%)及厚壁菌门Firmicutes(9.88%)。其中的泛菌属(Pantoea sp.)和鞘氨醇单胞菌属(Sphingomonas sp.)、假单胞菌属(Pseudomonas sp.)、微杆菌属(Microbacterium sp.)为分离到的优势种群,且在种子这一特殊的生存空间中有4株潜在的新种存在。首次报道了杂交水稻金优611种子具有丰富的微生物群落多样性,为进一步探索植物种子际微生态环境中微生物群落的形成和生态功能提供了基础信息。  相似文献   

4.
5.
6.
A method for screening copper (Cu)-tolerant rice cultivars was studied by combining hydroponic experiments and cluster analysis, and the classification of cultivars in Cu stress tolerance was done. In the first hydroponic experiment, seedlings of Jiahe991 and Xiushui114 were planted in nutrient solution with different Cu2+ concentrations from 10 to 1800 μg/L. Results indicated that the toxic threshold of Cu concentration in solution ranged from 900 to 1200 μg/L, since SPAD (Soil and Plant Analyzer Development, SPAD-502, a portable chlorophyll meter, Minolta Camera Co. Ltd., Japan) values of leaves and seedlings biomass of the treatments with ≥900 and/or 1200 µg/L were significantly lower than the control. The second experiment was conducted with 16 local rice cultivars under three Cu treatments (10, 1000, and 1500 μg/L). The 16 cultivars were well classified into tolerant, normal, and sensitive groups as a result of cluster analysis based on the relative SPAD (Soil and Plant Analyzer Development, SPAD-502, a portable chlorophyll meter, Minolta Camera Co. Ltd., Japan) value, shoot and root dry weights, root length and root dehydrogenase activity, and oxidizing capacity and shoot Cu concentration. Xiushui123, Xiushui134, Jiahe991, and Xianghu301 belonged to the tolerant group; Xiushui137 belonged to the sensitive group. The cluster analysis based on hydroponic experiments is an effective method for identifying rice cultivars that are tolerant to Cu stress. In addition, four cultivars (Xiushui123, Xiushui134, Jiahe991, and Xianghu301) are recommended in local practice.  相似文献   

7.
In rice (Oryza sativa L.), later flowering inferior spikelets (IS), which are located on proximal secondary branches, fill slowly and produce smaller and lighter grains than earlier flowering superior spikelets (SS). Many genes have been reported to be involved in poor grain filling of IS, however the underlying molecular mechanisms remain unclear. The present study determined that GF14f, a member of the 14‐3‐3 protein family, showed temporal and spatial differences in expression patterns between SS and IS. Using GF14f–RNAi plants, we observed that a reduction in GF14f expression in the endosperm resulted in a significant increase in both grain length and weight, which in turn improved grain yield. Furthermore, pull‐down assays indicated that GF14f interacts with enzymes that are involved in sucrose breakdown, starch synthesis, tricarboxylic acid (TCA) cycle and glycolysis. At the same time, an increase in the activity of sucrose synthase (SuSase), adenosine diphosphate‐glucose pyrophosphorylase (AGPase), and starch synthase (StSase) was observed in the GF14f–RNAi grains. Comprehensive analysis of the proteome and metabolite profiling revealed that the abundance of proteins related to the TCA cycle, and glycolysis increased in the GF14f–RNAi grains together with several carbohydrate intermediates. These results suggested that GF14f negatively affected grain development and filling, and the observed higher abundance of the GF14f protein in IS compared with SS may be responsible for poor IS grain filling. The study provides insights into the molecular mechanisms underlying poor grain filling of IS and suggests that GF14f could serve as a potential tool for improving rice grain filling.  相似文献   

8.
In the management of lake eutrophication, the regulation effect of Fe is considered, in addition to the controlling nitrogen- and phosphorus input. Based on the “Fe hypothesis”, this paper tentatively ap-plied plant spectral response to the remote sensing early-warning mechanism of lake eutrophication. A laboratory water culture experiment with rice (Oryza sativa L.) was conducted to study Fe uptake by plants and the chlorophyll concentration and visible-near infrared spectrum of vegetable leaves as well as their interrelations under Fe2+ stress. Three spectral indices, i.e., A1 (integral value of the changes of spectral reflectivity in the range 460―670 nm under Fe2+ stress), A2 (integral value of the changes of spectral reflectivity in the range of 760―1000 nm under Fe2+ stress) and S (blue-shift range of red edge curve under Fe2+ stress), were used to establish quantitative models about the relationships between the rice leaf spectrum and Fe2+ stress. With the increase of Fe2+ in a culture solution, the Fe content in rice plants increased, while the chlorophyll concentration in vegetative leaves decreased. The spectral reflectivity of vegetable leaves increased in the visible light band but decreased in the near infrared band, and the blue-shift range of the red edge curve increased. The indices A1, A2 and S all had sig-nificant correlations with the Fe content in rice leaves, the correlation coefficient being respectively 0.951 (P < 0.01), −0.988 (P < 0.01) and 0.851 (P < 0.01), and simulated (multiple correlation coefficients R2 > 0.96) and predict the Fe level in rice leaves.  相似文献   

9.
低钾胁迫对水稻(Oryza sativa L.)化感潜力变化的影响   总被引:4,自引:0,他引:4  
研究以国际公认的化感水稻P1312777和非化感水稻Lemont为供体,稗草(Echinochloa cru-galli L.)为受体,采用稻/稗共培体系,研究低钾胁迫对水稻化感潜力变化的影响及其机制。受体稗草的形态指标分析结果表明,低钾胁迫促使化感水稻P1312777对共培稗草的根长、株高和干重的抑制率均升高,增幅远大于非化感水稻Lemont。受体稗草生理生化指标分析结果表明,低钾胁迫下化感与非化感水稻对受体稗草保护酶系(SOD、POD、CAT)及根系活力的抑制作用增强,但化感水稻P1312777比非化感水稻Lemont的抑制程度大,且达极显著差异。实时荧光定量PCR分析结果表明,低钾胁迫下,化感水稻P1312777根部与叶部中酚类代谢的关键酶——苯丙氨酸解氨酶、肉桂酸-4-羟化酶、羟化酶、O-甲基转移酶的基因均上调表达,而非化感水稻根部相应酶均下调表达,叶部除苯丙氨酸解氨酶上调,其余酶也下调表达。而萜类代谢途径关键酶——HMG—CoA还原酶、角鲨烯合酶、单萜烯环化酶、倍半萜烯环化酶、二萜烯环化酶的基因,在两种水稻根部中呈现出相同或相似的表达方式(上调或下调),即HMG—CoA还原酶上调表达,角鲨烯合酶、单萜烯环化酶、倍半萜烯环化酶、二萜烯环化酶下调表达;而在水稻叶部,非化感水稻Lmont相应酶基因表达方式仍然不变,化感水稻P1312777除了角鲨烯合酶下调表达,其余4个酶均上调表达。水稻根系分泌物中酚类物质的HPLC分析结果表明,低钾胁迫下,化感水稻P1312777根系分泌物中,所检出的酚酸类物质总量是正常营养条件下的2.30倍,而非化感水稻Lemont则是正常营养条件下的0.91倍。综合分析认为低钾胁迫下,化感水稻P1312777抑草能力增强主要是由于酚类代谢途径关键酶基因表达上调,导致酚类代谢途径旺盛,分泌出更多的酚类物质,进而破坏受体稗草保护酶系统,抑制了稗草的正常生长。  相似文献   

10.
Molybdenum cofactor (Moco) is essential for nitrate reductase (NR), xanthine dehydrogenase (XDH), and aldehyde oxidase to perform their catalytic functions in plants. Moco biosynthesis is a complex process involving many genes. Little is known about the genetics and molecular aspects of Moco biosynthesis in plants and other eukaryotes. In rice, we previously isolated a Moco mutant C25 with a mutation in the CNX2 gene from a mutagenized indica cultivar IR30 and characterized its biochemical properties. This mutant was crossed with a japonica cultivar, Norin 8, to investigate the linkage of cnx2 to restriction fragment length polymorphism (RFLP) and cleaved amplified polymorphic sequence (CAPS) markers. Chlorate resistance was used to trace the cnx2 mutation because of its cosegregation with the loss of NR and XDH activities observed earlier. RFLP and CAPS analyses show the location of the cnx2 locus on the long arm of chromosome 4. It is mapped between RFLP markers C513 and C377 with a distance of 9.5 and 13.1 cM, respectively. It is also linked with CAPS marker RA0738 at a distance of 30.3 cM. Received: 25 June 2000 / Accepted: 31 August 2000  相似文献   

11.
刘桂富  杨剑  朱军 《遗传学报》2006,33(7):607-616
QTL的加性效应、加性×加性上位性效应及它们与环境的互作效应是数量性状的重要遗传分量.利用IR64/Azucena的125个DH品系为群体,分析了水稻生物学产量及其两个构成性状干草产量和谷粒产量的遗传组成.用基于混合模型的复合区间作图(MCIM)方法进行QTL定位.检测到12个位点有加性主效应,27个位点涉及双位点互作,18个位点存在环境互作.结果表明水稻生物学产量和它的两个构成性状普遍存在上位性效应和QE互作效应.此外,还探讨了性状间相关的遗传基础.发现4个QTLs和一对上位性QTLs可能与生物学产量与干草产量之间的正相关有关.3个QTL可能与干草产量与谷粒产量之间的负相关有关.这些结果可能部分地解释了这3个性状相关的遗传原因.通过对水稻生物学产量及其两个构成性状所定位QTL的分析,加深了对数量性状QTL的认识.首先,QTL的上位性效应和QE互作效应是普遍存在的;其次,QTL的多效性或紧密连锁可能是遗传相关的原因,当QTL对两个性状作用的方向相同时可导致正向遗传相关,反之则为负向遗传相关,当有些QTL表现为同向作用而另一些QTL表现为反向作用时,则可削弱性状间的遗传相关性;第三,复合性状的QTL效应可分解为其组成性状的QTL效应,如果QTL对各组成性状的效应方向相反而相互抵消,可使复合性状的QTL效应不易被检测;第四,加性效应的QTL常参预构成上位性效应,而具有上位性效应的QTL并非都有加性主效应,表明忽略上位性的QTL定位方法会降低检测QTL的功效;最后,鉴别不同类型的QTL效应有利于指导育种实践,选择主效QTL适用于多环境,QE互作QTL适用于特定环境,对上位性QTL应强调选择基因组合而并非单个基因.  相似文献   

12.
13.
水稻砷污染及其对砷的吸收和代谢机制   总被引:7,自引:0,他引:7  
彭小燕  王茂意  刘凤杰  叶志鸿 《生态学报》2010,30(17):4782-4791
水稻是当今世界大部分地区(尤其是东南亚)的主要的粮食作物之一,同时也是砷(As)进入食物链的主要途径之一。日益严重的水稻田As污染,不但影响了稻米的产量和品质,而且通过食物链威胁着人体健康。如何减少水稻地上部(尤其是米粒)As的含量和降低其毒性,及提高水稻As耐性是亟需解决的世界食品安全问题。深入了解水稻对As的吸收、积累和代谢的生理及分子生物学机制是解决水稻As污染的关键途径。综述国内外研究,对今后深入研究提出建议。  相似文献   

14.
Rac is a subfamily of small GTP-binding protein family. Its molecular weight is between 20 and 30 kilodaltons. As a signal protein, Rac directly or indirectly participates in many physiological processes, such as the regulation of cytoskeleton and the transduction of stress-induced signal. So Rac is also named ?molecular switch? The switch is based on the cycle from a GTP-bound 憃n?to a GDP-bound 憃ff?state[1]. In the superfamily of GTP-binding protein, only heterotrimeric G protein, Ra…  相似文献   

15.
In order to enhance the resolution of an existing genetic map of rice, and to obtain a comprehensive picture of marker utility and genomic distribution of microsatellites in this important grain species, rice DNA sequences containing simple sequence repeats (SSRs) were extracted from several small-insert genomic libraries and from the database. One hundred and eighty eight new microsatellite markers were developed and evaluated for allelic diversity. The new simple sequence length polymorphisms (SSLPs) were incorporated into the existing map previously containing 124 SSR loci. The 312 microsatellite markers reported here provide whole-genome coverage with an average density of one SSLP per 6 cM. In this study, 26 SSLP markers were identified in published sequences of known genes, 65 were developed based on partial cDNA sequences available in GenBank, and 97 were isolated from genomic libraries. Microsatellite markers with different SSR motifs are relatively uniformly distributed along rice chromosomes regardless of whether they were derived from genomic clones or cDNA sequences. However, the distribution of polymorphism detected by these markers varies between different regions of the genome. Received: 5 May 1999 / Accepted: 16 August 1999  相似文献   

16.
图位克隆是建立在植物分子标记图谱之上的一种基因克隆技术。利用分子标记技术对目的基因进行精细定位,用与目的基因紧密连锁的分子标记筛查DNA文库,构建包含目的基因区域的物理图谱,通过染色体步移等方法找到包含目的基因的克隆,再通过遗传转化试验对目的基因进行功能验证。介绍了基因图位克隆的研究技术原理与技术环节,并对近年来水稻功能基因图位克隆研究进展进行了综述。  相似文献   

17.
To understand the development of rice leaf blades,we identified a new rolled-leaf mutant,w32,from indica cultivar IR64 through EMS mutagenesis. The mutant showed a stable rolled-leaf phenotype throughout the life cycle. Two F2 populations were developed by crossing w32 to cultivar IR24 and PA64. Genetic analysis showed that the rolled-leaf phenotype was controlled by a single recessive gene. To determine the location of the gene,bulked segregant analysis was carried out using mutant and wild-type DNA pools ...  相似文献   

18.
利用SSR定位籼稻品种Kaharamana中抗褐飞虱基因Bph9   总被引:8,自引:0,他引:8  
褐飞虱是危害水稻生产最重要的害虫之一,利用寄主抗性被认为是防治褐飞虱最经济而有效的方法。斯里兰卡水稻品种Kaharamana对东亚和东南亚的褐飞虱种群均表现抗虫性,利用分子遗传学的方法对其携带的Bph9基因进行了SSR定位。所用的遗传群体为来源于Kaharamana和02428的含有180个单株的F2分离群体,每个F2单株套袋自交获得F2:3家系。利用苗期集团鉴定埘F2:3家系进行抗褐飞虱鉴定,以推测相应F2单株的基因型。连锁分析表明,Bph9位于第12染色体上的两个SSR标记RM463和RM5341之间,分别与之相距6.8cM和9.7cM。该标记有助十将Bph9用于分子标记辅助选择育种研究。  相似文献   

19.
Studies of uptake of ionic sources of N by two hydroponically grown rice (Oryza sativa L.) cultivars (paddy‐field‐adapted Koshihikari and dryland‐adapted Kanto 168) showed that the magnitude of the nitrogen isotope fractionation (?) for uptake of NH4+ depended on the concentrations of NH4+ and cultivar (averaging –6·1‰ for Koshihikari and –12·0‰ for Kanto 168 at concentrations from 40 to 200 mmol m?3 and, respectively, –13·4 and –28·9‰ for the two cultivars at concentrations from 0·5 to 4 mol m?3). In contrast, the ? for uptake of NO3? in similar experiments was almost insensitive to the N concentration, falling within a much narrower range (+3·2‰ to –0·9‰ for Koshihikari and –0·9‰ to –5·1‰ for Kanto 168 over NO3? concentrations from 0·04 to 2 mol m?3). From longer term experiments in which Norin 8 and its nitrate‐reductase deficient mutant M819 were grown with 2 or 8 mol m?3 NO3? for 30 d, it was concluded that the small concentration‐independent isotopic fractionation during absorption of this ion was not related to nitrate reductase activity.  相似文献   

20.
Droughtis very harmful to grain yield due to its adverse effect on reproduction,especially on pollination proeess in rice.However,the molecular basis of such an effect still remains largely unknown.Here,wereport the role of amember of CBL(Calcineurin B-Like)Interacting Protein Kinase(CIPK)family,OsCIPK23,in pollination and stress responses in dee.Molecular analyses revealed that it is mainly expressed in pistil and anther but up-regulated by pollination,as well as by treatments of various abiotic stresses and phytohormones.RNA interference-mediated suppression of OsCIPK23 expression significantly reduced seed set and conferred a hypersensitive response to drought stress,indicating its possible roles in pollination and drought stress.In consistent,overexpression of OsCIPK23 induced the expression of seVeral drought tolerance related genes.Taken together,these results indicate that OsCIPK23 is a multistress induced gene and likely mediatesa signaling pathway commonly shared by both pollination and drought stress responses in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号