首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Aging is commonly associated with a structural deterioration of skin that compromises its barrier function, healing, and susceptibility to disease. Several lines of evidence show that these changes are driven largely by impaired tissue mitochondrial metabolism. While exercise is associated with numerous health benefits, there is no evidence that it affects skin tissue or that endocrine muscle‐to‐skin signaling occurs. We demonstrate that endurance exercise attenuates age‐associated changes to skin in humans and mice and identify exercise‐induced IL‐15 as a novel regulator of mitochondrial function in aging skin. We show that exercise controls IL‐15 expression in part through skeletal muscle AMP‐activated protein kinase (AMPK), a central regulator of metabolism, and that the elimination of muscle AMPK causes a deterioration of skin structure. Finally, we establish that daily IL‐15 therapy mimics some of the anti‐aging effects of exercise on muscle and skin in mice. Thus, we elucidate a mechanism by which exercise confers health benefits to skin and suggest that low‐dose IL‐15 therapy may prove to be a beneficial strategy to attenuate skin aging.  相似文献   

3.
Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate‐activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age‐related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti‐aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR‐based anti‐aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects.  相似文献   

4.
In the brain, insulin plays an important role in cognitive processes. During aging, these faculties decline, as does insulin signaling. The mechanism behind this last phenomenon is unclear. In recent studies, we reported that the mild and gradual loss of cholesterol in the synaptic fraction of hippocampal neurons during aging leads to a decrease in synaptic plasticity evoked by glutamate receptor activation and also by receptor tyrosine kinase (RTK) signaling. As insulin and insulin growth factor activity are dependent on tyrosine kinase receptors, we investigated whether the constitutive loss of brain cholesterol is also involved in the decay of insulin function with age. Using long‐term depression (LTD) induced by application of insulin to hippocampal slices as a read‐out, we found that the decline in insulin function during aging could be monitored as a progressive impairment of insulin‐LTD. The application of a cholesterol inclusion complex, which donates cholesterol to the membrane and increases membrane cholesterol levels, rescued the insulin signaling deficit and insulin‐LTD. In contrast, extraction of cholesterol from hippocampal neurons of adult mice produced the opposite effect. Furthermore, in vivo inhibition of Cyp46A1, an enzyme involved in brain cholesterol loss with age, improved insulin signaling. Fluorescence resonance energy transfer (FRET) experiments pointed to a change in receptor conformation by reduced membrane cholesterol, favoring ligand‐independent autophosphorylation. Together, these results indicate that changes in membrane fluidity of brain cells during aging play a key role in the decay of synaptic plasticity and cognition that occurs at this late stage of life.  相似文献   

5.
Multicellular signals are altered in the processes of both aging and neurodegenerative diseases, including Alzheimer's disease (AD). Similarities in behavioral and cellular functional changes suggest a common regulator between aging and AD that remains undetermined. Our genetics and behavioral approaches revealed the regulatory role of Akt in both aging and AD pathogenesis. In this study, we found that the activity of Akt is upregulated during aging through epidermal growth factor receptor activation by using the fruit fly as an in vivo model. Downregulation of Akt in neurons improved cell survival, locomotor activity, and starvation challenge in both aged and Aβ42‐expressing flies. Interestingly, increased cAMP levels attenuated both Akt activation‐induced early death and Aβ42‐induced learning deficit in flies. At the molecular level, overexpression of Akt promoted Notch cleavage, suggesting that Akt is an endogenous activity regulator of γ‐secretase. Taken together, this study revealed that Akt is involved in the aging process and Aβ toxicity, and manipulating Akt can restore both neuronal functions and improve behavioral activity during the processes of aging and AD pathogenesis.  相似文献   

6.
Age‐related and cancer‐related epigenomic modifications have been associated with enhanced cell‐to‐cell gene expression variability that characterizes increased cellular stochasticity. Since gene expression variability appears to be highly reduced by—and epigenetic and phenotypic stability acquired through—direct or long‐range cellular interactions during cell differentiation, we propose a common origin for aging and cancer in the failure to control cellular stochasticity by cell–cell interactions. Tissue‐disruption‐induced cellular stochasticity associated with epigenetic drift would be at the origin of organ dysfunction because of an increase in phenotypic variation among cells, ultimately leading to cell death and organ failure through a loss of coordination in cellular functions, and eventually to cancerization. We propose mechanistic research perspectives to corroborate this hypothesis and explore its evolutionary consequences, highlighting a positive correlation between the median age of mass loss onset (a proxy for the onset of organ aging) and the median age at cancer diagnosis.  相似文献   

7.
8.
Retinal ganglion cells (RGCs) become increasingly vulnerable to injury with advancing age. We recently showed that this vulnerability can be strongly modified in mice by exercise. However, the characteristics and underlying mechanisms of retinal protection with exercise remain unknown. Hence, the aim of this study was to investigate cellular changes associated with exercise‐induced protection of aging retinal cells and the role of local and peripheral trophic signalling in mediating these effects. We focussed on two molecules that are thought to play key roles in mediating beneficial effects of exercise: brain‐derived neurotrophic factor (BDNF) and AMP‐activated protein kinase (AMPK). In middle‐aged (12 months old) C57BL/6J mice, we found that exercise protected RGCs against dysfunction and cell loss after an acute injury induced by elevation of intra‐ocular pressure. This was associated with preservation of inner retinal synapses and reduced synaptic complement deposition. Retinal expression of BDNF was not upregulated in response to exercise alone. Rather, exercise maintained BDNF levels in the retina, which were decreased postinjury in nonexercised animals. Confirming a critical role for BDNF, we found that blocking BDNF signalling during exercise by pharmacological means or genetic knock‐down suppressed the functional protection of RGCs afforded by exercise. Protection of RGCs with exercise was independent of activation of AMPK in either retina or skeletal muscle. Our data support a previously unidentified mechanism in which exercise prevents loss of BDNF in the retina after injury and preserves neuronal function and survival by preventing complement‐mediated elimination of synapses.  相似文献   

9.
10.
Age‐related impairment of muscle function severely affects the health of an increasing elderly population. While causality and the underlying mechanisms remain poorly understood, exercise is an efficient intervention to blunt these aging effects. We thus investigated the role of the peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α), a potent regulator of mitochondrial function and exercise adaptation, in skeletal muscle during aging. We demonstrate that PGC‐1α overexpression improves mitochondrial dynamics and calcium buffering in an estrogen‐related receptor α‐dependent manner. Moreover, we show that sarcoplasmic reticulum stress is attenuated by PGC‐1α. As a result, PGC‐1α prevents tubular aggregate formation and cell death pathway activation in old muscle. Similarly, the pro‐apoptotic effects of ceramide and thapsigargin were blunted by PGC‐1α in muscle cells. Accordingly, mice with muscle‐specific gain‐of‐function and loss‐of‐function of PGC‐1α exhibit a delayed and premature aging phenotype, respectively. Together, our data reveal a key protective effect of PGC‐1α on muscle function and overall health span in aging.  相似文献   

11.
The age‐related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age‐associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC‐1α in the therapeutic effect of exercise in aging. Intriguingly, PGC‐1α muscle‐specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging‐related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC‐1α modulation. Surprisingly, we discovered that muscle PGC‐1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC‐1α.  相似文献   

12.
The identification and characterization of age‐related degenerative changes is a critical goal because it can elucidate mechanisms of aging biology and contribute to understanding interventions that promote longevity. Here, we document a novel, age‐related degenerative change in C. elegans hermaphrodites, an important model system for the genetic analysis of longevity. Matricidal hatching—intra‐uterine hatching of progeny that causes maternal death—displayed an age‐related increase in frequency and affected ~70% of mated, wild‐type hermaphrodites. The timing and incidence of matricidal hatching were largely independent of the levels of early and total progeny production and the duration of male exposure. Thus, matricidal hatching appears to reflect intrinsic age‐related degeneration of the egg‐laying system rather than use‐dependent damage accumulation. Consistent with this model, mutations that extend longevity by causing dietary restriction significantly delayed matricidal hatching, indicating age‐related degeneration of the egg‐laying system is controlled by nutrient availability. To identify the underlying tissue defect, we analyzed serotonin signaling that triggers vulval muscle contractions. Mated hermaphrodites displayed an age‐related decline in the ability to lay eggs in response to exogenous serotonin, indicating that vulval muscles and/or a further downstream function that is necessary for egg laying degenerate in an age‐related manner. By characterizing a new, age‐related degenerative event displayed by C. elegans hermaphrodites, these studies contribute to understanding a frequent cause of death in mated hermaphrodites and establish a model of age‐related reproductive complications that may be relevant to the birthing process in other animals such as humans.  相似文献   

13.
Aging involves coordinated yet distinct changes in organs and systems throughout life, including changes in essential trace elements. However, how aging affects tissue element composition (ionome) and how these changes lead to dysfunction and disease remain unclear. Here, we quantified changes in the ionome across eight organs and 16 age groups of mice. This global profiling revealed novel interactions between elements at the level of tissue, age, and diet, and allowed us to achieve a broader, organismal view of the aging process. We found that while the entire ionome steadily transitions along the young‐to‐old trajectory, individual organs are characterized by distinct element changes. The ionome of mice on calorie restriction (CR) moved along a similar but shifted trajectory, pointing that at the organismal level this dietary regimen changes metabolism in order to slow down aging. However, in some tissues CR mimicked a younger state of control mice. Even though some elements changed with age differently in different tissues, in general aging was characterized by the reduced levels of elements as well as their increased variance. The dataset we prepared also allowed to develop organ‐specific, ionome‐based markers of aging that could help monitor the rate of aging. In some tissues, these markers reported the lifespan‐extending effect of CR. These aging biomarkers have the potential to become an accessible tool to test the age‐modulating effects of interventions.  相似文献   

14.
The hippocampus is critical for cognition and memory formation and is vulnerable to age‐related atrophy and loss of function. These phenotypes are attenuated by caloric restriction (CR), a dietary intervention that delays aging. Here, we show significant regional effects in hippocampal energy metabolism that are responsive to age and CR, implicating metabolic pathways in neuronal protection. In situ mitochondrial cytochrome c oxidase activity was region specific and lower in aged mice, and the impact of age was region specific. Multiphoton laser scanning microscopy revealed region‐ and age‐specific differences in nicotinamide adenine dinucleotide (NAD)‐derived metabolic cofactors. Age‐related changes in metabolic parameters were temporally separated, with early and late events in the metabolic response to age. There was a significant regional impact of age to lower levels of PGC‐1α, a master mitochondrial regulator. Rather than reversing the impact of age, CR induced a distinct metabolic state with decreased cytochrome c oxidase activity and increased levels of NAD(P)H. Levels of hippocampal PGC‐1α were lower with CR, as were levels of GSK3β, a key regulator of PGC‐1α turnover and activity. Regional distribution and colocalization of PGC‐1α and GSK3β in mouse hippocampus was similar in monkeys. Furthermore, the impact of CR to lower levels of both PGC‐1α and GSK3β was also conserved. The studies presented here establish the hippocampus as a highly varied metabolic environment, reveal cell‐type and regional specificity in the metabolic response to age and delayed aging by CR, and suggest that PGC‐1α and GSK3β play a role in implementing the neuroprotective program induced by CR.  相似文献   

15.
Animals, plants and fungi undergo an aging process with remarkable physiological and molecular similarities, suggesting that aging has long been a fact of life for eukaryotes and one to which our unicellular ancestors were subject. Key biochemical pathways that impact longevity evolved prior to multicellularity, and the interactions between these pathways and the aging process therefore emerged in ancient single‐celled eukaryotes. Nevertheless, we do not fully understand how aging impacts the fitness of unicellular organisms, and whether such cells gain a benefit from modulating rather than simply suppressing the aging process. We hypothesized that age‐related loss of fitness in single‐celled eukaryotes may be counterbalanced, partly or wholly, by a transition from a specialist to a generalist life‐history strategy that enhances adaptability to other environments. We tested this hypothesis in budding yeast using competition assays and found that while young cells are more successful in glucose, highly aged cells outcompete young cells on other carbon sources such as galactose. This occurs because aged yeast divide faster than young cells in galactose, reversing the normal association between age and fitness. The impact of aging on single‐celled organisms is therefore complex and may be regulated in ways that anticipate changing nutrient availability. We propose that pathways connecting nutrient availability with aging arose in unicellular eukaryotes to capitalize on age‐linked diversity in growth strategy and that individual cells in higher eukaryotes may similarly diversify during aging to the detriment of the organism as a whole.  相似文献   

16.
Aging is an independent risk factor for cardiovascular diseases and therefore of particular interest for the prevention of cardiovascular events. However, the mechanisms underlying vascular aging are not well understood. Since carcinoembryonic antigen‐related cell adhesion molecule 1 (CEACAM1) is crucially involved in vascular homeostasis, we sought to identify the role of CEACAM1 in vascular aging. Using human internal thoracic artery and murine aorta, we show that CEACAM1 is upregulated in the course of vascular aging. Further analyses demonstrated that TNF‐α is CEACAM1‐dependently upregulated in the aging vasculature. Vice versa, TNF‐α induces CEACAM1 expression. This results in a feed‐forward loop in the aging vasculature that maintains a chronic pro‐inflammatory milieu. Furthermore, we demonstrate that age‐associated vascular alterations, that is, increased oxidative stress and vascular fibrosis, due to increased medial collagen deposition crucially depend on the presence of CEACAM1. Additionally, age‐dependent upregulation of vascular CEACAM1 expression contributes to endothelial barrier impairment, putatively via increased VEGF/VEGFR‐2 signaling. Consequently, aging‐related upregulation of vascular CEACAM1 expression results in endothelial dysfunction that may promote atherosclerotic plaque formation in the presence of additional risk factors. Our data suggest that CEACAM1 might represent an attractive target in order to delay physiological aging and therefore the transition to vascular disorders such as atherosclerosis.  相似文献   

17.
18.
Aging is associated with myocardial dysfunction although the underlying mechanism is unclear. AMPK, a key cellular fuel sensor for energy metabolism, is compromised with aging. This study examined the role of AMPK deficiency in aging‐associated myocardial dysfunction. Young or old wild‐type (WT) and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD) were used. AMPK α isoform activity, myocardial function and morphology were examined. DCF and JC‐1 fluorescence probes were employed to quantify reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm), respectively. KD mice displayed significantly reduced α2 but not α1 AMPK isoform activity at both ages with a greater effect at old age. Aging itself decreased α1 isoform activity. Cardiomyocyte contractile function, intracellular Ca2+ handling, and SERCA2a levels were compromised with aging, the effects of which were exacerbated by AMPK deficiency. H&E staining revealed cardiomyocyte hypertrophy with aging, which was more pronounced in KD mice. TEM micrographs displayed severe disruption of mitochondrial ultrastructure characterized by swollen, irregular shape and disrupted cristae in aged KD compared with WT mice. Aging enhanced ROS production and reduced ΔΨm, the effects of which were accentuated by AMPK deficiency. Immunoblotting data depicted unchanged Akt phosphorylation and a significant decrease in mitochondrial biogenesis cofactor PGC‐1α in aged groups. AMPK deficiency but not aging decreased the phosphorylation of ACC and eNOS. Expression of membrane Glut4 and HSP90 was decreased in aged KD mice. Moreover, treatment of the AMPK activator metformin attenuated aging‐induced cardiomyocyte contractile defects. Collectively, our data suggest a role for AMPK deficiency in aging‐induced cardiac dysfunction possibly through disrupted mitochondrial function and ROS production.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号