首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR‐1‐3p and miR‐206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR‐1‐3p and miR‐206 can overcome HGF‐induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR‐1‐3p and miR‐206 restored the sensitivities of lung cancer cells PC‐9 and HCC‐827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR‐1‐3p and miR‐206 directly target HGF receptor c‐Met in lung cancer. Knockdown of c‐Met mimicked the effects of miR‐1‐3p and miR‐206 transfections Meanwhile, c‐Met overexpression attenuated the effects of miR‐1‐3p and miR‐206 in HGF‐induced gefitinib resistance of lung cancers. Furthermore, we showed that miR‐1‐3p and miR‐206 inhibited c‐Met downstream Akt and Erk pathway and blocked HGF‐induced epithelial‐mesenchymal transition (EMT). Finally, we demonstrated that miR‐1‐3p and miR‐206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR‐1‐3p and miR‐206 in overcoming HGF‐induced gefitinib resistance in EGFR mutant lung cancer cell.  相似文献   

2.
Our previously published study documented a deregulation of the microRNA miR‐150 in colorectal cancer. Here, we investigated further, in vitro and in vivo, the potential molecular mechanisms underlying the involvement of miR‐150 in colorectal cancer, using the appropriate molecular biological methods. We report that miR‐150 is a key regulator in the tumourigenesis and progression of colorectal cancer, by acting as a tumour suppressor targeting c‐Myb. The current findings suggest that miR‐150 may have important roles in the pathogenesis of colorectal cancer.  相似文献   

3.
Increasing studies show that circular RNAs (circRNAs) play vital roles in tumour progression. But, how circRNAs function in ovarian cancer is mostly unclear. Here, we detected the expression of circEPSTI1 in ovarian cancer and explored the function of circEPSTI1 in ovarian cancer via a series of experiments. Then, we performed luciferase assay and RNA immunoprecipitation (RIP) assay to explore the competing endogenous RNA (ceRNA) function of circEPSTI1 in ovarian cancer. qRT‐PCR verified that circEPSTI1 was overexpressed in ovarian cancer. Inhibition of circEPSTI1 suppressed ovarian cancer cell proliferation, invasion but promoted cell apoptosis. Luciferase assays and RIP assay showed that circEPSTI1 and EPSTI1 (epithelial stromal interaction 1) could directly bind to miR‐942. And circEPSTI1 could regulate EPSTI1 expression via sponging miR‐942. In summary, circEPSTI1 regulated EPSTI1 expression and ovarian cancer progression by sponging miR‐942. circEPSTI1 could be used as a biomarker and therapeutic target in ovarian cancer.  相似文献   

4.
miR‐145, the most abundant miRNA in the vascular smooth muscle cells (VSMCs), regulates VSMC function in intimal hyperplasia. It has been reported that autophagy participates in the regulation of proliferation and migration of VSMCs. However, the effect of miR‐145 on autophagy and related mechanism in the proliferation and migration of VSMCs remains unclear. Therefore, we aimed to determine the effect of miR‐145 on autophagy and the mechanism in VSMCs. Cell autophagy was determined by transmission electron microscope, mRFP‐GFP‐LC3 assay and Western blotting. A recombinant lentivirus containing miR‐145 was used to construct VSMCs with miR‐145 overexpression. We found that miR‐145 expression was decreased, and autophagy was increased in the carotid arteries of C57BL/6J mice with intimal hyperplasia and TGF‐β1‐stimulated VSMCs. Furthermore, miR‐145 overexpression inhibited cell autophagy, whereas miR‐145 inhibition promoted autophagy in TGF‐β1‐stimulated VSMCs. Meanwhile, miR‐145 inhibited the proliferation and migration of VSMCs. More importantly, our study showed that autophagy inhibition augmented the inhibitory effect of miR‐145 on the proliferation and migration of VSMCs. In addition, we found that the sirtuins are not direct targets of miR‐145 in the proliferation and migration of VSMCs. These results suggest that miR‐145 inhibits the proliferation and migration of VSMCs by suppressing the activation of autophagy.  相似文献   

5.
Based on miR‐874 expression levels in the GSE47841 microarray, we hypothesized that the mature products of miR‐874, miR‐874‐3p, or miR‐874‐5p, would inhibit epithelial ovarian cancer (EOC) cell proliferation, metastasis, and chemoresistance. We first examined miR‐874‐3p and miR‐874‐5p expression levels in primary EOC tumor tissue samples and found that they were significantly decreased. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) cell proliferation and transwell assays revealed that miR‐874‐3p and miR‐874‐5p significantly inhibit EOC cell proliferation, migration, and invasion. Then, using MTT and soft agar assays of paclitaxel‐treated Caov3 and SKOV3 cells transfected with miR‐874‐3p and miR‐874‐5p, we found that miR‐874‐3p and miR‐874‐5p enhance EOC cell chemosensitivity. We then confirmed that serine/threonine‐protein kinase 2 (SIK2) was a target gene of miR‐874‐3p and miR‐874‐5p. Overall, the results of this study indicate that SIK2 expression can serve as a prognostic biomarker for EOC and that miR‐874‐3p and miR‐874‐5p have the potential to enhance clinical treatment of EOC.  相似文献   

6.
Our present work was aimed to study on the regulatory role of MALAT1/miR‐145‐5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX‐resistant PCa cell lines (DU‐145‐DTX and PC‐3‐DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT‐PCR analysis was performed to measure MALAT1 expression in DTX‐sensitive and DTX‐resistant tissues/cells. The human DTX‐resistant cell lines DU145‐PTX and PC3‐DTX were established as in vitro cell models, and the expression of MALAT1, miR‐145‐5p and AKAP12 was manipulated in DTX‐sensitive and DTX‐resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual‐luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR‐145‐5p, as well as between miR‐145‐5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR‐145‐5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up‐regulated in clinical DTX‐resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR‐145‐5p as a target of MALAT1. MiR‐145‐5p overexpression in PC3‐DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR‐145‐5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX‐chemoresistance in vivo. There was an lncRNA MALAT1/miR‐145‐5p/AKAP12 axis involved in DTX resistance of PCa cells and provided a new thought for PCa therapy.  相似文献   

7.
8.
9.
Since lncRNAs could modulate neoplastic development by modulating downstream miRNAs and genes, this study was carried out to figure out the synthetic contribution of HOTAIR, miR‐613 and c‐met to viability, apoptosis and proliferation of retinoblastoma cells. Totally 276 retinoblastoma tissues and tumour‐adjacent tissues were collected, and human retinoblastoma cell lines (ie, Y79, HXO‐Rb44, SO‐Rb50 and WERI‐RB1) were also gathered. Moreover, transfections of pcDNA3.1‐HOTAIR, si‐HOTAIR, miR‐613 mimic, miR‐613 inhibitor, pcDNA3.1/c‐met were performed to evaluate the influence of HOTAIR, miR‐613 and c‐met on viability, apoptosis and epithelial‐mesenchymal transition (EMT) of retinoblastoma cells. Dual‐luciferase reporter gene assay was also arranged to confirm the targeted relationship between HOTAIR and miR‐613, as well as between miR‐613 and c‐met. Consequently, up‐regulated HOTAIR and down‐regulated miR‐613 expressions displayed associations with poor survival status of retinoblastoma patients (P < 0.05). Besides, inhibited HOTAIR and promoted miR‐613 elevated E‐cadherin expression, yet decreased Snail and Vimentin expressions (P < 0.05). Simultaneously, cell proliferation and cell viability were also less‐motivated (P < 0.05). Nonetheless, c‐met prohibited the functioning of miR‐613, resulting in promoted cell proliferation and viability, along with inhibited cell apoptosis (P < 0.05). Finally, HOTAIR was verified to directly target miR‐613, and c‐met was the direct target gene of miR‐613 (P < 0.05). In conclusion, the role of lncRNA HOTAIR/miR‐613/c‐met signalling axis in modulating retinoblastoma cells’ viability, apoptosis and expressions of EMT‐specific proteins might provide evidences for developing appropriate diagnostic and treatment strategies for retinoblastoma.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Stroke is a major cerebrovascular disease threatening human health and life with high morbidity, disability and mortality. We aimed to find effective biomarkers for the early diagnosis on stroke. Nine previously reported stroke‐associated miRNAs (miR‐21, miR‐23a, miR‐29b, miR‐124, miR‐145, miR‐210, miR‐221, miR‐223 and miR‐483‐5p) were measured by quantitative real time‐PCR, and plasma high‐sensitivity C‐reactive protein (hs‐CRP) and serum interleukin 6 (IL‐6), the pro‐inflammation markers in brain injury, were examined by enzyme‐linked immunosorbent assay in 146 acute ischemic stroke patients and 96 healthy blood donors. We found that serum miR‐145 was significantly increased within 24 h after stroke onset and serum miR‐23a and miR‐221 were decreased in patients. Moreover, serum miR‐145 was strong positively correlated with plasma hs‐CRP and moderate positively correlated with serum IL‐6. Meanwhile, serum miR‐23a and miR‐221 were moderate negatively correlated with plasma hs‐CRP but not serum IL‐6. Importantly, the combination of hs‐CRP and serum miR‐145 gained a better sensitivity/spectivity for prediction of acute ischemia stroke (area under receiver operating characteristic curve from 0.794 to 0.896). Conclusively, our preliminary findings indicate that serum miR‐145 upregulated in acute ischemic stroke might be a new biomarker for acute ischemia stroke evaluation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Emerging evidence has indicated the important function of long non‐coding RNAs (lncRNAs) in tumour chemotherapy resistance. However, the underlying mechanism is still ambiguous. In this study, we investigate the physiopathologic role of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) on the paclitaxel (PTX) resistance in breast cancer. Results showed that lncRNA FTH1P3 was up‐regulated in paclitaxel‐resistant breast cancer tissue and cells (MCF‐7/PTX and MDA‐MB‐231/PTX cells) compared with paclitaxel‐sensitive tissue and parental cell lines (MCF‐7, MDA‐MB‐231). Gain‐ and loss‐of‐function experiments revealed that FTH1P3 silencing decreased the 50% inhibitory concentration (IC50) value of paclitaxel and induced cell cycle arrest at G2/M phase, while FTH1P3‐enhanced expression exerted the opposite effects. In vivo, xenograft mice assay showed that FTH1P3 silencing suppressed the tumour growth of paclitaxel‐resistant breast cancer cells and ABCB1 protein expression. Bioinformatics tools and luciferase reporter assay validated that FTH1P3 promoted ABCB1 protein expression through targeting miR‐206, acting as a miRNA “sponge.” In summary, our results reveal the potential regulatory mechanism of FTH1P3 on breast cancer paclitaxel resistance through miR‐206/ABCB1, providing a novel insight for the breast cancer chemoresistance.  相似文献   

19.
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that is primarily caused by cigarette smoke (CS)‐induced chronic inflammation. In this study, we investigated the function and mechanism of action of the long non‐coding RNA (lncRNA) taurine‐up‐regulated gene 1 (TUG1) in CS‐induced COPD. We found that the expression of TUG1 was significantly higher in the sputum cells and lung tissues of patients with COPD as compared to that in non‐smokers, and negatively correlated with the percentage of predicted forced expiratory volume in 1 second. In addition, up‐regulation of TUG1 was observed in CS‐exposed mice, and knockdown of TUG1 attenuated inflammation and airway remodelling in a mouse model. Moreover, TUG1 expression was higher in CS extract (CSE)‐treated human bronchial epithelial cells and lung fibroblasts, whereas inhibition of TUG1 reversed CSE‐induced inflammation and collagen deposition in vitro. Mechanistically, TUG1 promoted the expression of dual‐specificity phosphatase 6 (DUSP6) by sponging miR‐145‐5p. DUSP6 overexpression reversed TUG1 knockdown‐mediated inhibition of inflammation and airway remodelling. These findings suggested an important role of TUG1 in the pathological alterations associated with CS‐mediated airway remodelling in COPD. Thus, TUG1 may be a promising therapeutic target in CS‐induced airway inflammation and fibroblast activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号