首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A morphometric study of vascular smooth muscle cells in culture   总被引:1,自引:0,他引:1  
Summary Cultured arterial smooth muscle cells derived from different times in culture, different passages, and different species were evaluated by a combination of transmission electron microscopy and morphometry. The morphometric studies focused on point counting and monitored the following cellular components: lysosomes, myofilaments, mitochondria, ribosomes, and rough endoplasmic reticulum (RER). Percent volume composition values for the organelles involved in protein synthesis, namely ribosomes and RER, show significant fluctuations with time. Consistent with these observations, the cells showed increasing myofilaments during the early weeks in culture, which subsequently decreased significantly. The data also indicate that rabbit cells in culture may become synthetically quiescent with time and the distribution of cellular components is altered with each succeeding passage. Cultured calf (bovine) cells exhibit similar activity periods compared to rabbit but show a significantly higher lysosomal and lower myofilament content than rabbit. Calf cells could not be maintained for longer than 21 days in the absence of ascorbate, whereas ascorbate affects the ultrastructure of rabbit cells less dramatically. Age, passage, and donor, among others, are important considerations for studying in vitro smooth muscle cells. With proper morphologic and morphometric monitoring, these smooth muscle cell culture systems can be important tools in the study of aging or pathologic processes, or both. This work was presented as partial fulfillment for the degree of Ph.D. This work was supported by National Institutes of Health Grants HL-13262, HL-19717, and AG-00001.  相似文献   

2.
Summary Cholesterol oxidase (3-hydroxy-steroid oxidase) catalyzes the oxidation of cholesterol to 4-cholesten-3 one and other oxidized cholesterol derivatives. The purpose of the present study was to investigate its effects on cultured vascular smooth muscle cells. Cultured rabbit aortic smooth muscle cells were morphologically altered after exposure to cholesterol oxidase in the presence of culture medium containing 10% fetal calf serum. If fetal calf serum was absent, cells were unaffected by the treatment. The extent of morphological change of the smooth muscle cells was dependent upon the time of exposure to the enzyme and the concentration of cholesterol oxidase employed. After moderate treatment with cholesterol oxidase, cells excluded trypan blue. Further, a specific mitochondrial marker DASPMI (dimethyl aminostyryl-methyl-pyridiniumiodine) which was used as a fluorescent index of cell viability, revealed that cell viability was unchanged after moderate cholesterol oxidase treatment. Nile red, a hydrophobic probe which selectively stains intracellular lipid droplets, was applied to detect the cellular lipid content after treatment with cholesterol oxidase. Cellular nile red fluorescence intensity increased linearly with the time and concentration of cholesterol oxidase treatment. These results demonstrate that cholesterol oxidase alters lipid deposition in the cell and changes cell morphology. The primary site of action of cholesterol oxidase appears to be independent of the cell membrane itself and instead is dependent upon the lipid content in the surrounding culture media. These changes occur prior to the cytotoxic effects of extensive oxidation. Because oxidized cholesterol may play an important role in the pathogenesis of atherosclerosis, our results have implications for intracellular accumulation of lipids in smooth muscle cells during the atherosclerotic lesion.  相似文献   

3.
Pan CS  Qi YF  Wang SH  Zhao J  Bu DF  Li GZ  Tang CS 《Regulatory peptides》2004,120(1-3):77-83
Vascular calcification is a common finding in many cardiovascular diseases. Paracrine/autocrine changes in calcified vessels, and the secreted factors participate in and play an important role in the progress of calcification. Adrenomedullin (ADM) is a potent vasodilator peptide secreted by vascular smooth muscle cells (VSMCs) and vascular endothelial cells. Recently, receptor activity-modifying proteins (RAMPs) have been shown to transport calcitonin receptor-like receptor (CRLR) to the cell surface to present either as CGRP receptor or ADM receptor. In this work, we explored the production of ADM, alterations and significance of ADM mRNA and its receptor system components—CRLR and RAMPs mRNA in calcified VSMCs. Our results showed that calcium content, 45Ca2+ uptake and alkaline phosphatases (ALPs) activity in calcified VSMCs were increased, respectively, compared with control VSMCs. Content of ADM in medium was increased by 99% (p<0.01). Furthermore, it was found that the levels of ADM, CRLR, RAMP2 and RAMP3 mRNA in calcified cells were elevated, respectively, compared with that of control. The elevated levels of CRLR, RAMP2 and RAMP3 mRNA were significant correlation with ADM mRNA (r=0.83, 0.92 and 0.93, respectively, all p's<0.01) in calcified VSMCs. The results show that calcified VSMCs generate an increased amount of ADM, up-regulate gene expressions of ADM and its receptor system components—CRLR, RAMP2 and RAMP3, suggesting an important role of ADM and its receptor system in the regulation of vascular calcification.  相似文献   

4.
Macroautophagy/autophagy is considered as an evolutionarily conserved cellular catabolic process. In this study, we aimed to elucidate the role of autophagy in vascular smooth muscle cells (SMCs) on atherosclerosis. SMCs cultured from mice with SMC-specific deletion of the essential autophagy gene atg7 (Atg7cKO) showed reduced serum-induced cell growth, increased cell death, and decreased cell proliferation rate. Furthermore, 7-ketocholestrerol enhanced apoptosis and the expression of CCL2 (chemokine [C-C motif] ligand 2) with the activation of TRP53, the mouse ortholog of human and rat TP53, in SMCs from Atg7cKO mice. In addition, Atg7cKO mice crossed with Apoe (apolipoprotein E)-deficient mice (apoeKO; Atg7cKO:apoeKO) showed reduced medial cellularity and increased TUNEL-positive cells in the descending aorta at 10 weeks of age. Intriguingly, Atg7cKO: apoeKO mice fed a Western diet containing 1.25% cholesterol for 14 weeks showed a reduced survival rate. Autopsy of the mice demonstrated the presence of aortic rupture. Analysis of the descending aorta in Atg7cKO:apoeKO mice showed increased plaque area, increased TUNEL-positive area, decreased SMC-positive area, accumulation of macrophages in the media, and adventitia and perivascular tissue, increased CCL2 expression in SMCs in the vascular wall, medial disruption, and aneurysm formation. In conclusion, our data suggest that defective autophagy in SMCs enhances atherosclerotic changes with outward arterial remodeling.  相似文献   

5.
Summary The accumulation and proliferation of vascular smooth muscle cells (VSMC) within the vessel wall is an important pathogenic feature in the development of atherosclerosis. Glucose metabolism has been implicated to play an important role in this cellular mechanism. To further elucidate the role of glucose metabolism in atherogenesis, glycolysis and its regulation have been investigated in proliferating VSMC. Platelet derived growth factor (PDGF BB)-induced proliferation of VSMCs significantly stimulated glucose flux through glycolysis. Further evaluating the enzymatic regulation of this pathway, the analysis of flux:metabolite co-responses revealed that anaerobic glycolytic flux is controlled at different sites of gycolysis in proliferating VSMCs, being consistent with the concept of multisite modulation. These findings indicate that regulation of glycolytic flux in proliferating VSMCs differs from traditional concepts of metabolic control of the Embden–Meyerhof pathway.  相似文献   

6.

Objectives

Vascular calcification is highly prevalent in patients with chronic kidney disease (CKD) and contributes to increased risk of cardiovascular disease and mortality. Accumulated evidences suggested that vascular smooth muscle cells (VSMCs) to osteoblast-like cells transdifferentiation (VOT) plays a crucial role in promoting vascular calcification. MicroRNAs (miRNAs) are a novel class of small RNAs that negatively regulate gene expression via repression of the target mRNAs. In the present work, we sought to determine the role of miRNAs in VSMCs phenotypic transition and calcification induced by β-glycerophosphoric acid.

Approach and results

Primary cultured rat aortic VSMCs were treated with β-glycerophosphoric acid for different periods of time. In VSMCs, after β-glycerophosphoric acid treatment, the expressions of cbf β1, osteocalcin and osteopontin were significantly increased and SM-22β expression was decreased. ALP activity was induced by β-glycerophosphoric acid in a time or dose dependent manner. Calcium deposition was detected in VSMCs incubated with calcification media; then, miR-125b expression was detected by real-time RT PCR. miR-125b expression was significantly decreased in VSMCs after incubated with β-glycerophosphoric acid. Overexpression of miR-125b could inhibit β-glycerophosphoric acid-induced osteogenic markers expression and calcification of VSMCs whereas knockdown of miR-125b promoted the phenotypic transition of VSMCs and calcification. Moreover, miR-125b targeted Ets1 and regulated its protein expression in VSMCs. Downregulating Ets1 expression by its siRNA inhibited β-glycerophosphoric acid-induced the VSMCs phenotypic transition and calcification.

Conclusion

Our study suggests that down-regulation of miR-125b after β-glycerophosphoric acid treatment facilitates VSMCs transdifferentiation and calcification through targeting Ets1.  相似文献   

7.
Vascular smooth muscle cells (VSMCs) play a significant role in atherosclerosis. As a multifunctional protein, nucleolin (NCL) is involved in many important physiological and pathological processes. In this study, we aimed to investigate the role of nucleolin in VSMCs proliferation and cell cycle. The expression of nucleolin increased in VSMCs of mice with aortas advanced plaques. With the left common carotid-artery ligation-injury model, immunofluorescence staining revealed that nucleolin and Ki67 expression increased in VSMCs in mice left carotid artery compared with right carotid artery after surgery. POVPC or ox-LDL up-regulated nucleolin mRNA and protein expression in a dose- and time-dependent manner in HAVSMCs. POVPC (5μg/ml) or ox-LDL (50μg/ml) promoted the proliferation of HAVSMCs. Nucleolin ablation relieved the pro-proliferation role of VSMCs. The cell cycle assay and cell ability results showing that POVPC or ox-LDL increased the proliferation, but nucleolin ablation inhibited the proliferation of HAVSMCs. And nucleolin ablation can prevent DNA replication at S phase and induce cell cycle arrest in S phase. The bioinformatics database predicts protein-protein interactions with nucleolin and aurora B. Nucleolin overexpression and ablation affected the expression of aurora B. These findings indicate for the first time that nucleolin actively involved the proliferation of VSMCs via aurora B.  相似文献   

8.
Relatively limited information is available regarding the mechanisms controlling vasomotricity in human vessels. Isolated vessels obtained from patients undergoing surgery were used to characterize the role of endothelial factors and to study coupling mechanisms between receptors, intracellular calcium, and contraction. However, these investigations are limited by the availability of tissues and many uncontrolled factors. Cultured human vascular cells were also used, were these cells rapidly lose at least some of their differentiated characters. Recently, a human blood vessel equivalent was constructed in vitro from cultured cells, using tissue engineering. This technique allowed us to obtain vessel equivalents containing intima, media, and adventitia layers or tubular media layer only. Contraction and rises in intracellular calcium produced by agonists were studied, indicating that such human vessel equivalents may provide valuable models for pharmacological studies.  相似文献   

9.
An important characteristic of hyperlipemia associated with magnesium deficiency in rats is the postprandial accumulation of triglyceride-rich lipoproteins. The present investigation was performed to determine the effect of serum from magnesium-deficient animals on cultured vascular smooth muscle cells (VSMC). Sera were obtained from control and magnesium-deficient rats fed adequate or deficient diets for 8 days. Magnesium-deficient animals were hypertriglyceridemic compared with control rats, but their total cholesterolemia was not significantly modified. Pooled sera from control and magnesium-deficient animals were added to the culture medium at various concentrations. The maximum of proliferation for both control and magnesium-deficient sera was reached when they were added at 6% to the culture medium and on day 4 after the begining of incubation. Medium containing serum from magnesium-deficient rats stimulated the cell proliferation as monitored by cell count and [3H]thymidine incorporation. Staining of VSMC with Oil red O and measuring lipids have shown a marked lipid accumulation (triglycerides) in cells incubated with serum obtained from magnesium-deficient animals compared with serum from control rats. These results indicate that serum from magnesium-deficient rats contains factors that stimulate proliferation of arterial medial cells and that hyperlipemia associated with magnesium-deficiency may cause lipid accumulation in vascular cells.  相似文献   

10.
The genetic basis for the phenotypic switching of vascular smooth muscle cells (VSMCs) is unclear in atherosclerosis. Recent studies showed that the 21‐base pair deletion mutation (Δ21) in myocyte enhancer factor 2A (MEF2A) gene could be an inherited marker for coronary artery disease. MEF2A mutation may affect the phenotypic switching of VSMCs. Human aortic VSMCs were used. Four groups of VSMCs transfected with green fluorescent protein plasmid (control group), MEF2A wild‐type (WT) plasmid (WT group), MEF2A Δ21 plasmid (Δ21 group) or MEF2A siRNA (siRNA group) were studied. The proliferation of VSMCs was determined by methylthiazolyldiphenyl‐tetrazolium bromide, and the migration of VSMCs was measured by Millicell chamber. The protein expressions of MEF2A, smooth muscle α‐actin, SM22α, osteopontin and p38 mitogen‐activated protein kinase signaling pathway were detected by Western blotting. MEF2A protein expression was knockdown by siRNA transfection. MEF2A protein was overexpressed in WT and Δ21 groups. Δ21 and siRNA groups obviously showed more proliferation (methylthiazolyldiphenyl‐tetrazolium bromide, 0.63 vs 0.66 vs 0.31, P < 0.01) and migration (52.6 vs 58.0 vs 21.2, P < 0.01) of VSMCs as compared with the WT group. In addition, the transfection of Δ21 and siRNA could induce the down‐regulation of smooth muscle α‐actin and SM22α (P < 0.01) and the up‐regulation of osteopontin (P < 0.01) in VSMCs. The phosphorylated p38 signaling pathway expression was significantly enhanced in the Δ21 and siRNA groups as compared with that of the WT group (P < 0.01). These results suggest that MEF2A dominant negative mutation and RNA silence could induce the phenotypic switching of VSMCs, leading to its increased proliferation and migration, and p38 mitogen‐activated protein kinase signaling pathway may participate in it. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.  相似文献   

12.
Vascular calcification refers to the pathological deposition of calcium and phosphate minerals into the vasculature. It is prevalent in atherosclerosis, ageing, type 2 diabetes mellitus and chronic kidney disease, thus, increasing morbidity and mortality from these conditions. Vascular calcification shares similar mechanisms with bone mineralization, with smooth muscle cells playing a critical role in both processes. In the last decade, a variety of microRNAs have been identified as key regulators for the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition in vascular smooth muscle cells during vascular calcification. Therefore, this review mainly discusses the roles of microRNAs in the pathophysiological mechanisms of vascular calcification in smooth muscle cells and describes several interventions against vascular calcification by regulating microRNAs. As the exact mechanisms of calcification remain not fully elucidated, having a better understanding of microRNA involvement in vascular calcification may give impetus to development of novel therapeutics for the control and treatment of vascular calcification.  相似文献   

13.
14.
Studies were conducted to determine if in vivo exposure to dinitrotoluenes (DNT), which is associated with circulatory disorders of atherosclerotic etiology in humans, is associated with alterations of vascular smooth muscle cells (SMC) consistent with the atherogenic process. Sprague-Dawley rats (150-180 g) were injected IP for 5 days/week for 8 weeks with 2,4- or 2,6-DNT (0.5, 5, or 10 mg/kg) or medium chain triglyceride (MCT) oil. Histopathologic evaluation of aortae from animals exposed to either isomer showed dysplasia and rearrangement of SMC at all doses tested. Reduced 3H-thymidine incorporation was observed in primary cultures of aortic SMC from DNT-exposed animals relative to vehicle controls. This inhibitory response was maintained for up to two passages in culture after which a significant increase in thymidine incorporation was observed. Exposure of SMC from naive animals to DNT in vitro (1–100 µM) did not alter the extent of thymidine incorporation in cycling or growth-arrested cultures. In contrast, exposure to 2,4- or 2,6-diaminotoluene (DAT) (1–100 µM), carcinogens which share toxic metabolic intermediates in common with DNT, inhibited replicative DNA synthesis and stimulated unscheduled DNA synthesis in cycling and growth-arrested cultures of SMC, respectively. Our results suggest that modulation of DNA synthesis in aortic SMC by DNT metabolites generated in vivo contribute to the development of vascular lesions.Abbreviation DAT diaminotuluene - tDNT technical grade dinitrotoluene - DNT dinitrotoluenes - HU hydroxyurea - IP intraperitoneal - LDH lactate dehydrogenase - MCT oil medium chain triglyceride - NPTC non-protein thiol content - RDS replicative DNA synthesis - SEM standard error of the mean - SMC smooth muscle cells - UDS unscheduled DNA synthesis  相似文献   

15.
In this short review we describe the observations which have led us to conclude that one of the most important components involved in modulating cell proliferation in vitro, and probably in vivo as well, may be the extrac-cellular matrix upon which cells rest.  相似文献   

16.
17.
Vascular interstitial cells (VICs) are non‐contractile cells with filopodia previously described in healthy blood vessels of rodents and their function remains unknown. The objective of this study was to identify VICs in human arteries and to ascertain their role. VICs were identified in the wall of human gastro‐omental arteries using transmission electron microscopy. Isolated VICs showed ability to form new and elongate existing filopodia and actively change body shape. Most importantly sprouting VICs were also observed in cell dispersal. RT‐PCR performed on separately collected contractile vascular smooth muscle cells (VSMCs) and VICs showed that both cell types expressed the gene for smooth muscle myosin heavy chain (SM‐MHC). Immunofluorescent labelling showed that both VSMCs and VICs had similar fluorescence for SM‐MHC and αSM‐actin, VICs, however, had significantly lower fluorescence for smoothelin, myosin light chain kinase, h‐calponin and SM22α. It was also found that VICs do not have cytoskeleton as rigid as in contractile VSMCs. VICs express number of VSMC‐specific proteins and display features of phenotypically modulated VSMCs with increased migratory abilities. VICs, therefore represent resident phenotypically modulated VSMCs that are present in human arteries under normal physiological conditions.  相似文献   

18.
Zheng XC  An W  Bai JX  Mao SH  Wu YJ 《生理学报》1999,(2):199-205
本实验构建含人铜锌超氧化物歧化酶(hSOD1)基因的逆转录病毒载体,将其导入离体培养的鼠血管平滑肌细胞,观察hSOD1基因表达及其抗氧自由基损害作用,结果表明:(1)载体构建策略和方法正确,hSOD1基因可在靶细胞中高效稳定表达;(2)转化hSOD1的VSMCs可对抗大剂量氧自由基对细胞的直接损伤作用;(3)小剂量氧自由基刺激VSMCs增殖,而转化hSOD1的VSMCs增殖反应受到抑制,本研究结果  相似文献   

19.
血管平滑肌细胞(vascular smooth muscle cells,VSMCs)的发育与血管壁的构建是目前相关领域中的重要学科前沿.国内外同行的工作多集中在血管发育初始阶段内皮细胞及其前体细胞在血管新生中的作用、调节因素及生物学机制.VSMCs参与血管壁早期构建,特别是VSMCs的募集与分化机制已经成为血管新生研究中的一个新领域. 本期发表的《 抑制Rac1蛋白活化阻碍胚胎发育早期血管新生 》(见696~701页)报道了韩雅玲教授及其合作者在这一领域取得的最新研究结果.Rac1是真核细胞内重要的一类信号传递分子,在细胞信号传递过程中发挥分子开关作用.他们采用胚胎干细胞(ESCs)为模型,建立稳定表达持续型Rac1和显性失活型Rac1编码序列的小鼠ESCs并制备胚胎小体,诱导分化后观察其对内皮细胞分化和迁移的影响,发现抑制Rac1可以干扰血管内皮细胞连接成血管网状结构,细胞骨架F-actin排列紊乱,细胞的迁移受到明显抑制,表明Rac1在胚胎早期血管发育过程中与内皮细胞的迁移有关[1]. 近年来,韩雅玲教授及其研究集体在VSMCs发育与血管构建、胚胎干细胞来源的拟胚体血管平滑肌发育与血管新生机制以及胚胎主动脉VSMCs起源等方面开展了研究,取得了一系列有价值的成果[2~11],可能为闭塞性和增生性血管病的发生及防治提供理论依据和候选基因.详见“相关链接”.  相似文献   

20.
Summary It has been proposed that low density lipoprotein (LDL) must undergo oxidative modification before it can participate in atherosclerosis. The present paper studied the effect of cholesterol oxidation in LDL on cultured vascular smooth muscle cells. LDL was oxidized by cholesterol oxidase (3--hydroxy-steroid oxidase) which catalyzes the oxidation of cholesterol to 4-cholesten-3 one and other oxidized cholesterol derivatives. Cholesterol oxidase treatment of LDL did not result in lipid peroxidation. Cultured rabbit aortic smooth muscle cells were morphologically changed following exposure to cholesterol oxidized LDL. Nile red, a hydrophobic probe which can selectively stain intracellular lipid droplets, was applied to detect the cellular lipid content after treatment with oxidized or non-oxidized LDL cholesterol. LDL which did not undergo oxidation of its cholesterol had no effect on the cells. However, cellular nile red fluorescence intensity was increased as the pre-incubation time of cholesterol oxidase with LDL increased. This was supported by HPLC analysis which revealed that the oxidized cholesterol content of treated cells increased. These findings suggest that cholesterol oxidation of LDL can alter lipid deposition in the cells and change cell morphology. The oxidation of cholesterol in vivo may play an important role in the modification of LDL which could contribute to the generation of the lipid-laden foam cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号