首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim We test hypotheses regarding the origin of diversity and patterns of species richness in and around the New Zealand Southern Alps with 25 species of Chionochloa (Poaceae, Danthonioideae). Location New Zealand. Methods We inferred a well‐resolved and mostly robustly supported chloroplast phylogeny based on multiple DNA sequence markers (trnT–L–F, rpl16, trnD–psbM, atpB–rbcL, matK and ndhF), sampling 92% of the recognized species and 82% of the subspecific taxa. Nuclear ribosomal internal transcribed spacer sequences were also sampled, but proved uninformative. Biogeographic reconstruction and character optimization were done using both parsimony and likelihood approaches, and molecular dating used relaxed clock approaches. Results Most of the species diversity in Chionochloa stemmed from a common ancestor in the southern South Island with subsequent dispersal between areas. One clade of apparently cryptic taxa diversified within the central South Island ‘endemism gap’, persisting there throughout at least the latter half of the Pleistocene. Exclusively alpine and other habitat specialist species originated independently, the former relatively recently (between 7.6 Ma and the present). Main conclusions The phylogeny of Chionochloa and other published phylogenies of New Zealand plant groups demonstrate that the higher degree of endemism in the north and south of the New Zealand South Island relative to a central endemism gap cannot be explained by Alpine Fault displacement. Furthermore, our results suggest that if extinctions resulting from glaciations played a role in the origin of the central endemism gap, their impact was less than might be presumed on the basis of the distribution of taxa as they are currently defined. The diversification of Chionochloa and a number of New Zealand plant groups, such as Ranunculus, was contemporaneous with the initiation of the uplift of the Southern Alps. In contrast to patterns of diversifications within the alpine regions typical of the hyperdiverse Andes, exclusively alpine species in New Zealand arose independently from ancestors distributed in more lowland areas. Similarly, habitat specialists in Chionochloa arose independently from more generalist ancestors. Thus, although diversification in these groups may have been stimulated by mountain building and Pleistocene climatic oscillations, cladogenesis did not occur within the high alpine habitat itself.  相似文献   

2.
Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain–island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice‐free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain–island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long‐term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65–1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.  相似文献   

3.
Material ascribed to the genus Callulina from north‐east Tanzania and south‐east Kenya is assessed. Three new species of Callulina are described from the North ( Callulina laphami sp. nov. ) and South ( Callulina shengena sp. nov. and Callulina stanleyi sp. nov. ) Pare Mountains in Tanzania. The species are diagnosed based on morphological, acoustic, and molecular data. A new key to the species of Callulina is provided. Based on an interpretation of the International Union for Conservation of Nature (IUCN) red list, we suggest that the three species will qualify as critically endangered, because of their small distributions and the ongoing threat to their habitat. We reveal the high local endemism of Callulina in the northern part of the Eastern Arc Mountains, with each species restricted to no more than one mountain (fragment) block. This high local endemism in Callulina is probably widespread across the Eastern Arc, raising further conservation concern for this group of amphibians. Based on new molecular phylogenetic data for Callulina, we discuss biogeographical relationships among north‐east Tanzanian mountains, and evolutionary patterns in Eastern Arc breviciptids. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 496–514.  相似文献   

4.
The Pilosella alpicola group comprises four morphologically distinct and geographically vicariant alpine taxa. We performed a thorough herbarium revision and literature survey to infer their distributional pattern(s). Pilosella alpicola s.s. occurs in the Alps in two disjunct areas: the Swiss Valais Alps and the Italian Dolomites. Historical records come also from the Austrian Alps (Gurktaler Alps and Hohe Tauern) and from one site from the Alpes Maritimes (Col de Larche), but the localities have not been recently confirmed. Pilosella rhodopea, a Balkan subendemic taxon, is quite widespread in Bulgaria (Stara planina Mts, Rila Mts and Pirin Mts), but is more rare in Albania, Greece and Macedonia. Interestingly, this species has also been recorded at two isolated sites in the Romanian southern Carpathians (the C?p??înii and Cozia Mts). This occurrence underlines the floristic affinities of this part of the Carpathians to the Balkan flora. Only two localities of P. serbica, based on voucher specimens, have been recorded so far; Kopaonik Mts in Serbia and the Prokletije Mts in Montenegro. The records from other ranges are related to P. rhodopea. Pilosella ullepitschii, the detailed distribution of which has already been published, is a Carpathian endemic with its core area of distribution in the western Carpathians (Slovakia and Poland). Three isolated localities are also known in the eastern Carpathians (Nemira Mts) and one locality in the southern Carpathians (Bucegi Mts). The possible causes of disjunctions between and within species ranges are briefly discussed. Based on the distributional data, population sizes and ecology, we evaluate the conservation status of the P. alpicola taxa and propose their inclusion in national Red Lists.  相似文献   

5.
Research has shown species undergoing range contractions and/or northward and higher elevational movements as a result of changing climates. Here, we evaluate how the distribution of a group of cold‐adapted plant species with similar evolutionary histories changes in response to warming climates. We selected 29 species of Micranthes (Saxifragaceae) representing the mountain and Arctic biomes of the Northern Hemisphere. For this analysis, 24,755 data points were input into ecological niche models to assess both present fundamental niches and predicted future ranges under climate change scenarios. Comparisons were made across the Northern Hemisphere between all cold‐adapted Micranthes, including Arctic species, montane species, and species defined as narrow endemics. Under future climate change models, 72% of the species would occupy smaller geographical areas than at present. This loss of habitat is most pronounced in Arctic species in general, but is also prevalent in species restricted to higher elevations in mountains. Additionally, narrowly endemic species restricted to high elevations were more susceptible to habitat loss than those species found at lower elevations. Using a large dataset and modeling habitat suitability at a global scale, our results empirically model the threats to cold‐adapted species as a result of warming climates. Although Arctic and alpine biomes share many underlying climate similarities, such as cold and short growing seasons, our results confirm that species in these climates have varied responses to climate change and that key abiotic variables differ between these two habitats.  相似文献   

6.
Cyclamen somalense Thulin & Warfa, spec. nova, the first member of the genus known from tropical Africa, is described from the Al Miskat Mts in NE. Somalia. The new species is closely related to the E. MediterraneanC. persicum Mill. The disjunct Mediterranean element in the mountain flora of northern Somalia, to whichC. somalense belongs, is believed to be largely a relict of Tertiary origin.  相似文献   

7.
Mountain systems, especially at high altitudes, are an excellent model for determining the mechanisms underlying high species diversity and endemism. Herein, we elucidate the evolutionary history of the alpine moth Arichanna perimelaina (Wehrli), which is endemic to the Hengduan Mountains (HM) region in southwest China, based on three mitochondrial genes and two nuclear genes. Our results revealed six deeply divergent clades that corresponded to populations in different mountain systems in the HM region. Bayesian divergence time estimations suggested a mid‐ to late Pleistocene genetic divergence. The results also showed that the Mt Yulong (YL) region was a refugium and valley corridors established by glaciation during the Pleistocene allowed populations on the separate mountains to migrate. The reproductive isolation among the different clades on contact zone in the YL region may be associated with the asynchronous mating rhythms and/or the divergent mate recognition caused by the ecological source of divergent selection. Allopatric divergence associated with complex topographies and climatic oscillations, regional dispersal via valley corridors and the suitable refugium of the YL region shaped the genetic divergence and distribution pattern of A. perimelaina in the HM region. These findings highlight the essential role of complex terrain and climatic fluctuations in shaping the unique phylogeographic history of a narrow alpine moth, and provide insights into the mechanisms underlying high species richness and endemism in the HM region.  相似文献   

8.
The Australian alpine region harbours a wide range of species, many of which are endemic and of high conservation value. Among these species, the endangered mountain pygmy‐possum, Burramys parvus, is of particular interest because this specialized marsupial is highly sensitive to extreme temperatures. The selection of microhabitats by B. parvus is a critical but poorly understood element of its biological characteristics. To understand the microhabitat preferences of B. parvus, we performed detailed investigations of the thermal properties of alpine boulder fields. The selection of a preferred microclimate was demonstrated by comparing temperatures and environmental conditions in preferred and non‐preferred boulder fields. The variability of the daily temperature depended on the depth at which measurements were made within the boulder fields. Temperatures were more stable as depth increased. The results suggest that B. parvus prefers to occupy deep boulder fields at high elevations with good rock structure (small rock and cavity size with multiple layers) and long snow duration because these boulder fields can provide a favourable microclimate. At 1 m depth, the maximum temperatures in the hottest part of the year were 1.27°C cooler in preferred compared to non‐preferred boulder fields. In the coldest part of the year, immediately following the melting of persistent snow cover, the minimum temperatures at a depth of 1 m were 1.67°C warmer in preferred compared to non‐preferred boulder fields. On average, the snow duration was 27 days greater in the boulder fields preferred by B. parvus than in non‐preferred boulder fields. Our results emphasize the value of boulder field microhabitats as thermal refuges for small mammals in rocky habitats within alpine environments in the light of continuing habitat loss and climate change.  相似文献   

9.
Aim The genus Kniphofia contains 71 species with an African–Malagasy distribution, including one species from Yemen. The genus has a general Afromontane distribution. Here we explore whether Kniphofia is a floristic indicator of the Afromontane centre of endemism and diversity. The South Africa Centre of diversity and endemism was explored in greater detail to understand biogeographical patterns. Location Africa, Afromontane Region, southern Africa, Madagascar and Yemen. Methods Diversity and endemism for the genus were examined at the continental scale using a chorological approach. Biogeographical patterns and endemism in the South Africa Centre were examined in greater detail using chorology, phenetics, parsimony analysis of endemicity (PAE) and mapping of range‐restricted taxa. Results Six centres of diversity were recovered, five of which are also centres of endemism. Eight subcentres of diversity are proposed, of which only two are considered subcentres of endemism. The South Africa Centre is the most species‐rich region and the largest centre of endemism for Kniphofia. The phenetic analysis of the South Africa Centre at the full degree square scale recovered three biogeographical areas that correspond with the subcentres obtained from the chorological analysis. The PAE (at the full degree square scale) and the mapping of range‐restricted taxa recovered two and six areas of endemism (AOEs), respectively. These latter two approaches produced results of limited value, possibly as a result of inadequate collecting of Kniphofia species. Only two AOEs were identified by PAE and these are embedded within two of the six AOEs recovered by the mapping of range‐restricted taxa. All the above AOEs are within the three subcentres found by chorological and phenetic analysis (at the full degree square scale) for the South Africa Centre. Main conclusions The centres for Kniphofia broadly correspond to the Afromontane regional mountain systems, but with some notable differences. We regard Kniphofia as a floristic indicator of the Afromontane Region sensu lato. In southern Africa, the phenetic approach at the full‐degree scale retrieved areas that correlate well with those obtained by the chorological approach.  相似文献   

10.
Polycelis (Seidlia) auriculata is endemic to mountain districts of Japan, from the central part of Honshû to the area of the Daisetsu Mts of Hokkaidô. In northern Japan, it sometimes occurs in cold-water biotopes of lowland areas. The progenitor of P. auriculata appears to have been the oldest immigrant into northern Japan among the Japanese Polycelis species, entering through a northern route as a preglacial faunal element. P. auriculata now shows a discontinious distribution in northern Japan. By virtue of its geographical and vertical distribution, ecological niche, variation in anatomy of the copulatory apparatus, and cytodemes, this species appears to be in the process of transformation.  相似文献   

11.
The paper presents the results of phytosociological research conducted on the vegetation of rock clefts and ledges in the Pamir-Alai Mountains (Tajikistan, Middle Asia). During the field studies, done in 2010–2012, 101 phytosociological relevés were taken. Plant species were recorded according to the Braun-Blanquet cover-abundance scale. Communities of calcareous rock clefts and ledges with small soil amounts from several ranges (Zeravshan Mts, Hissar Mts, Hazratishokh Mts, Darvaz Mts, Rushan Mts and Vanch Mts), inhabiting mainly the alpine and subnival zone, have been described. A synopsis of the rock communities of the Pamir-Alai is proposed. In the examined vegetation plots 77 vascular plant and 6 moss species were noted. The most frequent were: Achoriphragma pinnatifidum, Artemisia rutifolia, Asperula albiflora, Campanula incanescens, C. lehmanniana, Parietaria judaica, Pentanema albertoregelia, Poa relaxa and Stipa zeravshanica among vascular plants and Brachythecium albicans and Bryum caespiticum among mosses. Most of them are narrow endemics of Tajikistan or Middle Asia. The collected material presents most of the variability among the phytocoenoses of large crevices and rock ledges in limestone massifs in the alpine and subnival zones. As a result of field research and numerical analyses, 7 associations have been distinguished: Achoriphragmetum pinnatifidi, Asperulo albiflorae-Stipetum zeravshanicae, Inuletum glaucae, Paraquilegietum anemonoidis, Pentanemetum albertoregeliae, Rhinactinidietum popovii and Saussureaetum ovatae. The distinctiveness of habitat and species composition of Middle Asiatic rock communities makes it necessary to distinguish a new suballiance, Pentanemenion albertoregeliae, within the Asperulo albiflorae-Poion relaxae alliance. The main factors determining the species composition of classified associations seem to be the elevation above sea level and exposition. Alpine rock communities are one of the most unique and interesting plant formations in the moutainous areas of Pamir-Alai. Despite not being species-rich they often harbour many specialists adapted to harsh and extreme environments, especially in areas of Mediterranean-like climate.  相似文献   

12.
23 species, one subspecies and three varieties have been described or named for the pan-tropical genus Lasianthus Jack (Rubiaceae) in continental Africa. In the present revision thirteen species, five subspecies and one variety are recognized; additionally two hybrids are proposed. Of the previously named taxa, the subspecies is raised to species rank whereas two species are degraded to subspecies and variety status, respectively. Five species are synonymised including two varieties, and four are left with uncertain status, including one variety. The distribution of the genus in Africa consists of two distinct elements: one component is found in the Guineo-Congolian regional centre of endemism and one in the eastern part of Afiomontane Archipelago-like regional centre of endemism. A centre of species diversity is found in Eastern Arc Mts., where six endemic species occur together with L. laxinervis and the more widespread L. kilimandscharicus. Four of the species are strict endemics of the Uluguru Mts. In addition to the presentation of the new section: Lasianthus Sectio Membranacei, sect. nov., this revision contain two hybrids from Uluguru Mts.: L. macrocalyx × pedunculatus and L. cereifizorus × pedunculatus, and following new taxa and new combinations: L. africanus ssp. biokoensis, subsp. nov.; L. africanus ssp. mayumbensis, comb. et stat. nov.; L. kilimandscharicus ssp. glabrescens, ssp. nov.; L. kilimandscharicus ssp. glabrescens var. xanthospermus, comb. et stat. nov.; L. kilimandscharicus ssp. hirsutus, ssp. nov.; L. laxinervis, stat. nov.; L. pedunculatus ssp. angustisepalus, ssp. nov.  相似文献   

13.
Felix Gugerli 《Oecologia》1998,114(1):60-66
Self-compatibility in high arctic and alpine areas is regarded as an adaptation to low pollinator abundance. However, high genetic variability as a consequence of outcrossing is, with regard to population persistence, favorable in highly stochastic environments such as tundra habitats. To evaluate these contradictory scenarios, I performed in situ pollination experiments to examine the breeding system of the predominant outcrosser Saxifraga oppositifolia in ten populations at two different elevations in the Swiss Alps. Pollinator limitation was detected at both elevations, but fruit set in naturally pollinated flowers was only slightly less at the higher elevation. Increased pollinator limitation at high compared with low elevation thus could not be demonstrated in this experiment. Hand-crossings yielded equal mean proportion seed set at both elevations, and so did hand-selfings. This constant pattern of the breeding system in S. oppositifolia indicates selective factors that lead to the maintenance of a high level of outcrossing even in high-elevation populations. Based on sex allocation models, it was expected that a high ovule number should be selectively advantageous in a plant-pollinator system where chance visitation or selfing play important roles. However, female reproductive offer in terms of ovule number per flower did not change from low to high elevation. Since neither increased pollinator limitation nor increased seed set in selfed flowers was found at high compared with low elevation, the prerequisites for testing the hypothesis were not given. This study contradicts the hypothesis that inimical environmental factors in alpine or arctic habitats necessarily select for increased selfing rates in a preferentially outcrossing species like S. oppositifolia. Received: 28 April 1997 / Accepted: 20 October 1997  相似文献   

14.
The phytogeography of the genus Allium in Siberia and Mongolia is described, based on the numerical classification of a matrix of 56 species and 769 Operational Geographic Uniis (OGUs). Two main diversity centers can be detected, the Altai-Tuva region and southeastern Siberia, which can be further subdivided into 4 subcenters: Altai Mts., Tuva Mts., southern Baikal and Dahuria. The first three subcenters. located in southern Siberia, are rich in endemic species, which are mostly bound to semi-arid environments such as montane steppes and alpine vegetation. These old, isolated mountain ranges constitute the main refugial centers for the Allium flora of Siberia and Mongolia. The Tuva subcenter, rich in endemics and poor in polyploid species, seems to be the most conservative area; the south Baikal region, much richer in polyploid species, appears as an important center af speciation.  相似文献   

15.
Local adaptation and range restrictions in alpine environments are central topics in biogeographic research with important implications for predicting impacts of global climate change on organisms. Temperature is strongly coupled to elevation and greatly affects life history traits of oviparous reptiles in mountain environments. Thus, species may encounter barriers for expanding their ranges if they are unable to adapt to the changing thermal conditions encountered along elevational gradients. We sought to determine whether thermal requirements for embryonic development provide a plausible explanation for elevational range limits of two species of lacertid lizards that have complementary elevational ranges in a Mediterranean mountain range (Psammodromus algirus is found at elevations below 1600 m and Iberolacerta cyreni is found at elevations above 1600 m). We combined experimental incubation of eggs in the laboratory with modelled estimates of nest temperature in the field. In both species, increasing temperature accelerated development and produced earlier hatching dates. The species associated with warmer environments (P. algirus) experienced an excessive hatching delay under the lowest incubation temperature. Moreover, newborns from eggs incubated at low temperatures showed poor body condition and very slow rates of postnatal growth. In contrast, eggs of the strictly alpine species I. cyreni exhibited shorter incubation periods than P. algirus that allowed hatching before the end of the active season even under low incubation temperatures. This was countered by lower reproductive success at higher temperatures, due to lower hatching rates and higher incidence of abnormal phenotypes. Elevational range limits of both species coincided well with threshold temperatures for deleterious effects on embryonic development. We suggest that incubation temperature is a major ecophysiological factor determining the elevational range limits of these oviparous lizards with predictable consequences for mountain distributions under future warmer climates.  相似文献   

16.
Forty Klebsormidium strains isolated from soil crusts of mountain regions (Alps, 600–3,000 m elevation) were analyzed. The molecular phylogeny (internal transcribed spacer rDNA sequences) showed that these strains belong to clades B/C, D, E, and F. Seven main (K. flaccidum, K. elegans, K. crenulatum, K. dissectum, K. nitens, K. subtile, and K. fluitans) and four transitional morphotypes (K. cf. flaccidum, K. cf. nitens, K. cf. subtile, and K. cf. fluitans) were identified. Most strains belong to clade E, which includes isolates that prefer humid conditions. One representative of the xerophytic lineage (clade F) as well as few isolates characteristic of temperate conditions (clades B/C, D) were found. Most strains of clade E were isolated from low/middle elevations (<1,800 m above sea level; a.s.l.) in the pine‐forest zone. Strains of clades B/C, D, and F occurred sporadically at higher elevations (1,548–2,843 m a.s.l.), mostly under xerophytic conditions of alpine meadows. Comparison of the alpine Klebsormidium assemblage with data from other biogeographic regions indicated similarity with soil crusts/biofilms from terrestrial habitats in mixed forest in Western Europe, North America, and Asia, as well as walls of buildings in Western European cities. The alpine assemblage differed substantially from crusts from granite outcrops and sand dunes in Eastern Europe (Ukraine), and fundamentally from soil crusts in South African drylands. Epitypification of the known species K. flaccidum, K. crenulatum, K. subtile, K. nitens, K. dissectum, K. fluitans, K. mucosum, and K. elegans is proposed to establish taxonomic names and type material as an aid for practical studies on these algae, as well as for unambiguous identification of alpine strains. New combination Klebsormidium subtile (Kützing) Mikhailyuk, Glaser, Holzinger et Karsten comb. nov. is made.  相似文献   

17.
Quaternary climatic oscillations caused severe range expansions and retractions of European biota. During the cold phases, most species shifted to lower latitudes and altitudes, and expanded their distribution range northwards and to higher elevations during the warmer interglacial phases. These range shifts produced contrasting distribution dynamics, forming geographically restricted distribution patterns but also panmictic distributions, strongly dependent on the ecologic demands of the species. The two closely related butterfly species Erebia ottomana Herrich‐Schäffer, 1847 and Erebia cassioides (Reiner & Hohenwarth, 1792) show subalpine and alpine distribution settings, respectively. Erebia ottomana is found up to the treeline (1400–2400 m a.s.l.), whereas E. cassioides reaches much higher elevations (from about 1800 m a.s.l. in the Retezat Mountains, in Romania, to 2800 m a.s.l.). Thus, both species cover diverging climatic niches, and thus might also have been distributed differently during the cold glacial stages. Individuals of these two species were sampled over the mountain areas of the Balkan Peninsula and genetically analysed using allozyme electrophoresis. Additionally, we performed species distribution models (SDMs) to simulate the distribution patterns of both species in the past (i.e. during the Last Glacial Maximum and the Atlanticum). Our genetic data show contrasting structures, with comparatively low genetic differentiation but high genetic diversity found in E. ottomana, and with stronger genetic differentiation and a lower level of genetic diversity, including many endemic alleles, occurring restricted to single mountain massifs in E. cassioides. The SDMs support a downhill shift during glacial periods, especially for E. ottomana, with possible interconnection among mountain regions. We conclude that during the cold glacial phases, both species are assumed to shift downhill, but persisted at different elevations, with E. ottomana reaching the foothills and spreading over major parts of the Balkan Peninsula. In contrast, E. cassioides (the truly alpine species) survived in the foothills, but did not reach and spread over lowland areas. This more widespread distribution at the Balkan Peninsula of E. ottomana compared with E. cassioides is strongly supported by our distribution models. As a consequence, long‐term geographic restriction to distinct mountain massifs in E. cassioides versus panmixia in E. ottomana produced two contrasting evolutionary scenarios. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 569–583.  相似文献   

18.
The biogeography of Cineraria (Asteraceae, Senecioneae) is assessed using a chorological approach in terms of its distribution, centres of diversity and endemism. Rare species are identified and categorised according to Rabinowitz's criteria and causes for rarity in the genus are investigated. The conservation status of the species is assessed according to IUCN criteria for Red List categories and compared to levels of rarity. The main phytogeographic affinity of Cineraria is Afromontane in association with seven recognised centres of endemism in South Africa, four in tropical Africa, in Ethiopia and in Madagascar. Fifteen species are endemic and six are near‐endemic to a specific centre of endemism or mountain range. Seventy four percent of Cineraria spp. are endemic to southern Africa with the centre of diversity in the KwaZulu‐Natal Midlands, South Africa. The rarest species number 11; of these eight are endangered or vulnerable according to IUCN Red Data Criteria and three are data deficient. Causes of rarity in Cineraria are related to narrow habitat specificity, notably soil or rock type and/or altitudinal range. Paired comparisons of the 11 rarest and commonest species reveal no convincing causal links to morphological, reproductive or life history strategy attributes in Cineraria. © 2009 University of the Witwatersrand, Botanical Journal of the Linnean Society, 2009, 160 , 130–148.  相似文献   

19.

Aim

The alpine region of mainland Australia is one of the world's 187 biodiversity hotspots. Genetic analyses of Australian alpine fauna indicate high levels of endemism on fine spatial scales, unlike Northern Hemisphere alpine systems where shallow genetic differentiation is typically observed among populations. These discrepancies have been attributed to differences in elevation and influence from glacial activity, and point to a unique phylogeographic history affecting Australian alpine biodiversity. To test generality of these findings across Australian alpine biota, we assessed patterns of genetic structure across plant species.

Location

The Australian Alps, Victoria, eastern Australia.

Methods

We used an economical pooled genotyping‐by‐sequencing (GBS) approach to examine patterns of genetic diversity among seven widespread species including shrubs and forbs from 16 mountain summits in the Australian Alpine National Park. Patterns of genetic structure among summit populations for each species were inferred from an average of 2,778 independent SNP loci using Bayesian phylogenomic inference and clustering approaches.

Results

SNP results were consistent across species in identifying deep evolutionary splits among summit communities from the Northern and Central Victorian Alpine regions. These patterns of genetic structure are also consistent with those previously reported for invertebrate and mammal taxa. However, local genetic structure was less pronounced in the plants, supporting the notion that population connectivity tends to be higher in plant species.

Main conclusion

There is deep lineage diversification between the North and Central Victorian Alpine regions, reflecting a high level of endemism. These findings differ from those reported for alpine biodiversity from New South Wales and much of the Northern Hemisphere, and support the notion that genetic diversity is typically greatest in areas least affected by historical ice sheet formation. We discuss the implications of our findings in the context of conservation planning, and highlight the benefits of this rapid and cost‐effective genome scan approach for characterizing evolutionary processes at multispecies and landscape scales.  相似文献   

20.
In the Hruby Jeseník Mts of the Czech Republic, research was carried out from 2001–2005 aimed at completing an up-to-date census of alpine juniper [Juniperus communis subsp. alpine (Smith) Čelakovsky] and an evaluation of the overall health status of the populations, and at investigating the impacts of the main environmental factors on the viability of this species. 13 sites were identified with 283 individuals in total, but the sites differed dramatically in the number of recorded individuals. Comparisons with historical literature sources show that the species has been in decline. The main reasons for this decline include: a lack of suitable sites for colonization connected with a lack of adequate disturbance factors, competition from shading trees, and the presumed high age of the juniper populations combined with zero generative reproduction. More than two thirds of the individuals showed slight damage to their assimilation system. A health status of bad or very bad was determined for 5 % of the alpine juniper individuals. These trees in the Hruby Jeseník Mts are also exposed to pressure from some herbivore insects and mammals. The populations are not yet in a literally critical state, but considering the range of impacts affecting them, it will be necessary to pay significant attention to their conservation strategies. Some recommendations for future management are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号