首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Nanos proteins repress the expression of target mRNAs by recruiting effector complexes through non‐conserved N‐terminal regions. In vertebrates, Nanos proteins interact with the NOT1 subunit of the CCR4–NOT effector complex through a NOT1 interacting motif (NIM), which is absent in Nanos orthologs from several invertebrate species. Therefore, it has remained unclear whether the Nanos repressive mechanism is conserved and whether it also involves direct interactions with the CCR4–NOT deadenylase complex in invertebrates. Here, we identify an effector domain (NED) that is necessary for the Drosophila melanogaster (Dm) Nanos to repress mRNA targets. The NED recruits the CCR4–NOT complex through multiple and redundant binding sites, including a central region that interacts with the NOT module, which comprises the C‐terminal domains of NOT1–3. The crystal structure of the NED central region bound to the NOT module reveals an unanticipated bipartite binding interface that contacts NOT1 and NOT3 and is distinct from the NIM of vertebrate Nanos. Thus, despite the absence of sequence conservation, the N‐terminal regions of Nanos proteins recruit CCR4–NOT to assemble analogous repressive complexes.  相似文献   

3.
4.
miRNAs associate with Argonaute (AGO) proteins to silence the expression of mRNA targets by inhibiting translation and promoting deadenylation, decapping, and mRNA degradation. A current model for silencing suggests that AGOs mediate these effects through the sequential recruitment of GW182 proteins, the CCR4–NOT deadenylase complex and the translational repressor and decapping activator DDX6. An alternative model posits that AGOs repress translation by interfering with eIF4A function during 43S ribosomal scanning and that this mechanism is independent of GW182 and the CCR4–NOT complex in Drosophila melanogaster. Here, we show that miRNAs, AGOs, GW182, the CCR4–NOT complex, and DDX6/Me31B repress and degrade polyadenylated mRNA targets that are translated via scanning‐independent mechanisms in both human and Dm cells. This and additional observations indicate a common mechanism used by these proteins and miRNAs to mediate silencing. This mechanism does not require eIF4A function during ribosomal scanning.  相似文献   

5.
6.
In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin‐celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6‐1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)‐dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6‐1 during male meiosis and pollen mitosis I using fluorescent MT‐markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6‐1 mutants as a valuable tool for the investigation of augmin‐dependent MT nucleation and dynamics in plant cells.  相似文献   

7.
Plant cell wall remodeling plays a key role in the control of cell elongation and differentiation. In particular, fine‐tuning of the degree of methylesterification of pectins was previously reported to control developmental processes as diverse as pollen germination, pollen tube elongation, emergence of primordia or elongation of dark‐grown hypocotyls. However, how pectin degradation can modulate plant development has remained elusive. Here we report the characterization of a polygalacturonase (PG), AtPGLR, the gene for which is highly expressed at the onset of lateral root emergence in Arabidopsis. Due to gene compensation mechanisms, mutant approaches failed to determine the involvement of AtPGLR in plant growth. To overcome this issue, AtPGLR has been expressed heterologously in the yeast Pichia pastoris and biochemically characterized. We showed that AtPGLR is an endo‐PG that preferentially releases non‐methylesterified oligogalacturonides with a short degree of polymerization (< 8) at acidic pH. The application of the purified recombinant protein on Amaryllis pollen tubes, an excellent model for studying cell wall remodeling at acidic pH, induced abnormal pollen tubes or cytoplasmic leakage in the subapical dome of the pollen tube tip, where non‐methylesterified pectin epitopes are detected. Those leaks could either be repaired by new β‐glucan deposits (mostly callose) in the cell wall or promoted dramatic burst of the pollen tube. Our work presents the full biochemical characterization of an Arabidopsis PG and highlights the importance of pectin integrity in pollen tube elongation.  相似文献   

8.
Intracellular membrane fusion is effected by SNARE proteins that reside on adjacent membranes and form bridging trans‐SNARE complexes. Qa‐SNARE members of the Arabidopsis SYP1 family are involved in membrane fusion at the plasma membrane or during cell plate formation. Three SYP1 family members have been classified as pollen‐specific as inferred from gene expression profiling studies, and two of them, SYP124 and SYP125, are confined to angiosperms. The SYP124 gene appears genetically unstable, whereas its sister gene SYP125 shows essentially no variation among Arabidopsis accessions. The third pollen‐specific member SYP131 is sister to SYP132, which appears evolutionarily conserved in the plant lineage. Although evolutionarily diverse, the three SYP1 proteins are functionally overlapping in that only the triple mutant syp124 syp125 syp131 shows a specific and severe male gametophytic defect. While pollen development and germination appear normal, pollen tube growth is arrested during passage through the style. Our results suggest that angiosperm pollen tubes employ a combination of ancient and modern Qa‐SNARE proteins to sustain their growth‐promoting membrane dynamics during the reproductive process.  相似文献   

9.
Jasmonate (JA) signaling is essential for several environmental responses and reproductive development in many plant species. In Arabidopsis thaliana, the most obvious phenotype of JA biosynthetic and perception mutants is profound sporophytic male sterility characterized by failure of stamen filament elongation, severe delay of anther dehiscence and pollen inviability. The site of action of JA in the context of reproductive development has been discussed, but the ideas have not been tested experimentally. To this end we used targeted expression of a COI1‐YFP transgene in the coi1‐1 mutant background. As COI1 is an essential component of the JA co‐receptor complex, the null coi1‐1 mutant is male sterile due to lack of JA perception. We show that expression of COI1‐YFP in the epidermis of the stamen filament and anther in coi1 mutant plants is sufficient to rescue filament elongation, anther dehiscence and pollen viability. In contrast, filament expression alone or expression in the tapetum do not restore dehiscence and pollen viability. These results demonstrate that epidermal JA perception is sufficient for anther function and pollen viability, and suggest the presence of a JA‐dependent non‐autonomous signal produced in the anther epidermis to synchronize both anther dehiscence and pollen maturation.  相似文献   

10.
11.
12.
13.
The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two‐hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss‐of‐function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro‐nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi‐OsRAD51D RNAi‐knock‐down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi‐OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development.  相似文献   

14.
Arabinogalactan proteins (AGPs) are extensively glycosylated hydroxyproline‐rich glycoproteins ubiquitous in all plant tissues and cells. AtAGP6 and AtAGP11, the only two functionally known pollen‐specific classical AGP encoding genes in Arabidopsis, are reported to have redundant functions in microspore development. BcMF18 and BcMF8 isolated from Brassica campestris are the orthologues of AtAGP6 and AtAGP11, respectively. In contrast to the functional redundancy of AtAGP6 and AtAGP11, single‐gene disruption of BcMF8 led to deformed pollen grains with abnormal intine development and ectopic aperture formation in B. campestris. Here, we further explored the action of BcMF18 and its relationship with BcMF8. BcMF18 was specifically expressed in pollen during the late stages of microspore development. Antisense RNA transgenic lines with BcMF18 reduction resulted in aberrant pollen grains with abnormal cellulose distribution, lacking intine, cytoplasm and nuclei. Transgenic plants with repressive expression of both BcMF8 and BcMF18 showed a hybrid phenotype, expressing a mixture of the phenotypes of the single gene knockdown plant lines. In addition, we identified functional diversity between BcMF18/BcMF8 and AtAGP6/AtAGP11, mainly reflected by the specific contribution of BcMF18 and BcMF8 to pollen wall formation. These results suggest that, unlike the orthologous genes AtAGP6 and AtAGP11 in Arabidopsis, BcMF18 and BcMF8 are both integral to pollen biogenesis in B. campestris, acting through independent pathways during microspore development.  相似文献   

15.
16.
The microtubule (MT)‐associated putative kinase RUNKEL (RUK) is an important component of the phragmoplast machinery involved in cell plate formation in Arabidopsis somatic cytokinesis. Since loss‐of‐function ruk mutants display seedling lethality, it was previously not known whether RUK functions in mature sporophytes or during gametophyte development. In this study we utilized RUK proteins that lack the N‐terminal kinase domain to further examine biological processes related to RUK function. Truncated RUK proteins when expressed in wild‐type Arabidopsis plants cause cellularization defects not only in seedlings and adult tissues but also during male meiocyte development, resulting in abnormal pollen and reduced fertility. Ultrastructural analysis of male tetrads revealed irregular and incomplete or absent intersporal cell walls, caused by disorganized radial MT arrays. Moreover, in ruk mutants endosperm cellularization defects were also caused by disorganized radial MT arrays. Intriguingly, in seedlings expressing truncated RUK proteins, the kinesin HINKEL, which is required for the activation of a mitogen‐activated protein kinase signaling pathway regulating phragmoplast expansion, was mislocalized. Together, these observations support a common role for RUK in both phragmoplast‐based cytokinesis in somatic cells and syncytial cytokinesis in reproductive cells.  相似文献   

17.
18.
Pollen formation is a complex developmental process that has been extensively investigated to unravel underlying fundamental developmental mechanisms and for genetic manipulation of the male‐sterility trait for hybrid crop production. Here we describe identification of AtPUB4, a U–box/ARM repeat‐containing E3 ubiquitin ligase, as a novel player in male fertility in Arabidopsis. Loss of AtPUB4 function causes hypertrophic growth of the tapetum layer. The Atpub4 mutation also leads to incomplete degeneration of the tapetal cells and strikingly abnormal exine structures of pollen grains. As a result, although the Atpub4 mutant produces viable pollen, the pollen grains adhere to each other and to the remnants of incompletely degenerated tapetal cells, and do not properly disperse from dehisced anthers for successful pollination. We found that the male‐sterility phenotype caused by the Atpub4 mutation is temperature‐dependent: the mutant plants are sterile when grown at 22°C but are partially fertile at 16°C. Our study also indicates that the AtPUB4‐mediated pathway acts in parallel with the brassinosteroid pathway in controlling developmental fates of the tapetal cells to ensure male fertility.  相似文献   

19.
Kinetochore, a protein super‐complex on the centromere of chromosomes, mediates chromosome segregation during cell division by providing attachment sites for spindle microtubules. The NDC80 complex, composed of four proteins, NDC80, NUF2, SPC24 and SPC25, is localized at the outer kinetochore and connects spindle fibers to the kinetochore. Although it is conserved across species, functional studies of this complex are rare in Arabidopsis. Here, we characterize a recessive mutant, meristem unstructured‐1 (mun‐1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun‐1 is a weak allele because of the insertion of T‐DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9‐mediated mutagenesis showed zygotic embryonic lethality similar to nuf2‐1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two‐hybrid assay and in planta co‐immunoprecipitation. MUN is co‐localized at the centromere with HTR12/CENH3, which is a centromere‐specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of kinetochore components.  相似文献   

20.
RNA‐binding proteins (RBPs) play important roles for generating various cell types in many developmental processes, including eggs and sperms. Nanos is widely known as an evolutionarily conserved RNA‐binding protein implicated in germ cell development. Mouse NANOS2 interacts directly with the CCR4‐NOT (CNOT) deadenylase complex, resulting in the suppression of specific RNAs. However, the mechanisms involved in target specificity remain elusive. We show that another RBP, Dead end1 (DND1), directly interacts with NANOS2 to load unique RNAs into the CNOT complex. This interaction is mediated by the zinc finger domain of NANOS2, which is essential for its association with target RNAs. In addition, the conditional deletion of DND1 causes the disruption of male germ cell differentiation similar to that observed in Nanos2‐KO mice. Thus, DND1 is an essential partner for NANOS2 that leads to the degradation of specific RNAs. We also present the first evidence that the zinc finger domain of Nanos acts as a protein‐interacting domain for another RBP, providing a novel insight into Nanos‐mediated germ cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号