首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sequence analyses of the left and right termini of LuIII virus show they are nonidentical imperfect palindromes of 122 and 211 nucleotides, respectively. The left terminus of the minus strand of LuIII DNA, uniquely in the flip conformation, can assume a T-shaped structure. The right terminus of the minus strand of LuIII DNA can assume a U-shaped structure, and it exists in either the flip or flop conformation. The termini of LuIII shared a high degree of sequence homology and showed conserved secondary structure with those of the rodent parvoviruses MVMp and H-1. LuIII, like adeno-associated virus, encapsidates equal amounts of plus- and minus-strand DNA. However, the sequence data for LuIII virus demonstrate that identical termini are not required for this encapsidation pattern.  相似文献   

2.
The replication of the single-stranded DNA (ssDNA) of parvovirus LuIII was studied in synchronized HeLa cells. After infection of the cells in early S phase, synthesis of a replicative form (RF) DNA became detectable as early as 9 h postinfection, i.e., after display of the cellular helper function(s) indispensable for the replication of LuIII virus. According to digestion with nuclease S1, hybridization studies, and electron microscopy, RF DNA is a linear, double-stranded molecule comparable in length to mature ssDNA. It sedimented around 15S in neutral solution and banded at 1.714 g/ml in CsCl. Moreover, replication of LuIII DNA obviously includes a further replicative intermediate DNA which sedimented in front of RF DNA and bore single-stranded side-chains. Newly synthesized DNA disappeared from pools containing both RF DNA and replicative intermediate DNA within 5 min and reappeared in progeny virions only after 15 min. Intranuclear accumulation of significant amounts of progeny ssDNA could not be detected. It was postulated, therefore, that newly synthesized ssDNA is immediately enclosed in a stable maturation complex and resists extraction by the method of Hirt (1967).  相似文献   

3.
4.
The nucleotide sequences of the minus and plus strands of simian virus 40 DNA in a 17-base-pair segment spanning the EcoRI restriction site have been identified. The minus-strand sequence is (5′) T-G-G-C-G-A-G-A-A-T-T-C-C-T-T-T-G and the plus-strand sequence is its complement: (5′) C-A-A-A-G-G-A-A-T-T-C-T-C-G-C-C-A.  相似文献   

5.
The complementary strands of most of the genome double-stranded RNA segments of insect cytoplasmic polyhedrosis virus (CPV) and human reovirus are separated for the first time by agarose gel electrophoresis in in the presence of 7 M urea. CPV (+) strands and most reovirus (-) strands migrate faster than the corresponding strands of opposite polarity. Glyoxal treatment, which modifies guanine residues and prevents G-C basepairing, results in a loss of strand resolution and concomitantly a significant decrease in electrophoretic mobilities. Reovirus mRNAs synthesized in vitro with ITP substituted for GTP show similar decreased electrophoretic mobilities as the glyoxalated mRNAs. These results clearly indicate that the basis for (+) and (-) strand resolution is the presence of secondary structure formed mainly by G-C(U) base-pairs that are maintained during gel electrophoresis in the presence of 7 M urea. When the plus and minus strands of CPV genomes were separated and compared for protein synthesizing activity, it was found that only the plus strands were able to form stable 80S ribosome-RNA initiation complexes in wheat germ cell-free extracts.  相似文献   

6.
LuIII is an autonomous parvovirus which encapsidates either strand of its genome with similar efficiency in NB324K cells. Two parvoviruses closely related to LuIII, minute virus of mice (MVM) and H-1 virus, encapsidate primarily the minus strand of their genome when grown in the same cell type. It has been postulated that an AT-rich region unique to LuIII is responsible for symmetric encapsidation of plus- and minus-strand genomes by LuIII. To address this hypothesis, recombinant LuIII-luciferase genomes containing or lacking the AT-rich sequence (AT) were packaged into LuIII virions. Hybridization of strand-specific probes to DNA from these virions revealed that either strand of the genome was packaged regardless of the presence of AT. In addition, encapsidation of both strands of the AT+ LuIII-luciferase genome into MVM and H-1 virions was observed, suggesting that MVM and H-1 viral proteins are not responsible for the minus-strand packaging bias of these two viruses. Alignment of the published LuIII and MVMp sequences shows that AT exists as an insertion into an element that, in MVM, binds cellular proteins. We suggest that in LuIII, AT disrupts binding of these cellular proteins, allowing encapsidation of either strand.  相似文献   

7.
8.
9.
Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.  相似文献   

10.
11.
Tobacco leaves were labelled with tritiated undine for 30 or 120 minutes at different times after systemic infection with tobacco mosaic virus. RNA was extracted and separated into three fractions: one enriched in RF (replicative form), one enriched in RI (replicative intermediate), and one containing the bulk of single-stranded RNA. Radioactivity in plus strands (viral RNA) and minus strands (complementary RNA) was determined in each fraction by an isotope dilution assay. The amount of minus strands in the RP and RI fractions and the amount of plus strands in the single-stranded RNA fraction were also determined.Minus-strand synthesis was twice as high a few hours after the outbreak of visible symptoms as during the subsequent large accumulation of plus strands. At the early stage of virus production, the specific radioactivity of the minus strands was three- to fourfold that of the total RNA. Later it was about the same as that of the total RNA. As minus strands constitute a constant part of the total RNA at the later stages, this observation suggests that breakdown of minus strands is small.The specific radioactivity of minus strands was the same in corresponding RF and RI fractions. As the turn-over of minus strands appears to be small, a rapid interconversion of the two RNA types is indicated.In RF and RI the radioactivity in plus strands was between 6 and 50 times greater than that in minus strands. The specific radioactivity of plus strands was greater in RF and RI than in the single-stranded RNA, supporting the concept that both RF and RI have a precursor role for viral RNA.  相似文献   

12.
Coding capacity of complementary DNA strands.   总被引:7,自引:4,他引:3       下载免费PDF全文
A Fortran computer algorithm has been used to analyze the nucleotide sequence of several structural genes. The analysis performed on both coding and complementary DNA strands shows that whereas open reading frames shorter than 100 codons are randomly distributed on both DNA strands, open reading frames longer than 100 codons ("virtual genes") are significantly more frequent on the complementary DNA strand than on the coding one. These "virtual genes" were further investigated by looking at intron sequences, splicing points, signal sequences and by analyzing gene mutations. On the basis of this analysis coding and complementary DNA strands of several eukaryotic structural genes cannot be distinguished. In particular we suggest that the complementary DNA strand of the human epsilon-globin gene might indeed code for a protein.  相似文献   

13.
Complementary strands of CELO virus DNA.   总被引:1,自引:1,他引:0  
When alkali-denatured DNA from CELO virus (an avian adenovirus) was annealed for 15 min at 37 C in 0.1 M NaCl, 70% of the molecules formed single-stranded circles. This is probably due to base pairing of complementary sequences not more than 110 nucleotides long at the ends of the single strands and implies an inverted terminal repetition in the duplex DNA similar to that reported for the DNA from human adenoviruses. The circular molecules had a uniform length that was approximately the same as that of linear single-stranded molecules. The complementary strands of CELO virus DNA were separated on a preparative scale, and at least 40% of the heavy strands and 56% of the light strands were found to be intact as judged by the formation of single-stranded circles.  相似文献   

14.
Free minus strands (minus strands not involved in a firm duplex structure) are produced in Escherichia coli infected with the RNA phage Qβ. These minus strands can be extracted from the cells under conditions of mild lysis and low salt concentrations, and can be purified by electrophoresis on polyacrylamide gels.The free minus strands are fully competent as template for the Qβ-replicase in the absence of host factors, directing the synthesis of plus strands.  相似文献   

15.
16.
17.
Newly synthesized structural polypeptides of parvovirus LuIII, VP1 (62,000 daltons) and VP2 (74,000 daltons), were detected in nuclei of synchronized, infected HeLa cells at 11 to 12 h postinfection, i.e., after cells had passed through the S phase of the cell cycle. At this time, most of intranuclear viral polypeptides were associated with the chromatin acidic proteins. However, 13 to 14 h postinfection, about one-third of intranuclear VP1 and VP2 also could be extracted in the fraction containing nuclear sap proteins. According to pulse-chase experiments, VP1 and VP2 accumulated in the chromatin with a time lag of 20 to 30 min. About 90% of these chromatin-associated viral polypeptides represented empty viral capsids. In addition, chromatin prepared at 14 h postinfection contained 90 to 95% of the total intranuclear viral 16S replicative-form DNA. Since viral replicative-form DNA and empty viral capsids seem to be associated specifically with cellular chromatin, we assume that this subnuclear structure is the site of the synthesis of progeny viral DNA and the formation of complete virions.  相似文献   

18.
Comparative studies with tox plus and tox minus corynebacteriophages   总被引:10,自引:2,他引:8       下载免费PDF全文
The characteristics of nine inducible temperate corynebacteriophages designated alpha(tox+), beta(tox+), P(tox+), gamma(tox-), pi(tox+), K(tox-), rho(tox-), L(tox+), and delta(tox+) have been compared. Virion morphology and ability to recombine genetically with the well-studied phage beta(tox+) have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage beta(tox+) was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage beta(tox+), latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as beta(tox+) were capable of genetic recombination with beta(tox+), but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with beta(tox+) resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with beta(tox+) differed in these characteristics. The phages capable of genetic recombination with beta(tox+) were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in beta(tox+) and delta(tox+), phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin.  相似文献   

19.
Jovin and co-workers have demonstrated that DNA strands containing guanine-adenine repeats generate a parallel-stranded homoduplex. Here we propose that the homoduplex is a dimer of the ordered single strand discovered by Fresco and co-workers at acid pH. The Fresco single strand is shown here to be stabilized in aqueous ethanol where adenine is not protonated. Furthermore, we demonstrate that the strands dimerize at higher salt concentrations without significantly changing their conformation, so that the dimerization is non-cooperative. Hence, the Jovin homoduplex can form through a non-cooperative dimerization of two cooperatively melting single strands. The available data indicate that the guanines stabilize the Fresco single strand whereas the adenines cause dimerization owing to their known intercalation or clustering tendency. The guanine-adenine repeat dimer seems to be a DNA analog of the leucine zipper causing dimerization of proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号