首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Prolonged treatment of coupling factor I (CF1) from spinach chloroplasts with trypsin free of chymotrypsin yielded an active ATPase. The isolated preparation showed only two polypeptide chains (mol wt 55,000 to 60,000) on acrylamide gels run in the presence of sodium dodecyl sulfate. The three smaller subunits of CF1 were not detectable. The preparation no longer served as a coupling factor for photophosphorylation in either EDTA- or silicotungstate-treated chloroplasts. 2. An antiserum prepared against coupling factor I from chloroplasts inhibited the ATPase activity of the trypsin-treated CF1. In contrast, antisera prepared against the two individual (denatured) subunits did not inhibit the ATPase activity when tested either alone or together, although each interacted with the trypsin-treated protein, forming precipitin lines in Ouchterlony plates. 3. The trypsin-treated enzyme was still cold-labile, showing that the three smaller subunits are not required for this property. However, the enzyme was no longer sensitive to the natural inhibitor protein which is one of its subunits (subunit epislon), but was still sensitive to inhibition by the flavonoid quercetin. 4. Two equivalents of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole were sufficient to inhibit about 80% of the ATPase activity of the coupling factor, irrespective of whether it contained two of five subunits. The inhibition was completely reversed by dithiothreitol. 5. Triated 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole was prepared. Treatment of the coupling factor with this tritium-labeled inhibitor followed by electrophoresis on acrylamide gels revealed that most of the radioactivity was incorporated into the beta subunit of the enzyme (molecular weight 56,000).  相似文献   

2.
ATPase activity of the coupling factor 1, CF1, isolated from spinach chloroplasts, was enhanced by reduction with dithiothreitol. Reduced thioredoxins from spinach chloroplasts, Escherichia coli and human lymphocytes replaced dithiothreitol as reductant and activator of the ATPase. CF1 must be in an oxidized activated state to be further activated by reduced thioredoxin. This state was obtained either by heating CF1 or removing the inhibitory intrinsic epsilon subunit from CF1. Efficiency and primary structure of the different thioredoxins were compared. The progressive addition of KCl during ATPase activation by reduced thioredoxin increases then decreases this process. We proposed that three basic amino acids corresponding to arginine 73 and lysines 82 and 96 in Escherichia coli thioredoxin play an important role in the anchorage of the thioredoxin to the negatively charged surface of the CF1 and are involved in the dual effect of KCl. The variations in the screening effect of the negative charges of the CF1 surface by K+ ions can indeed explain the changes in the anchorage of these 3 basic amino acids with concomitant variation in ATPase activity. Human thioredoxin must be 10 times more concentrated than Escherichia coli or spinach chloroplast thioredoxin to exhibit the same activation effect on the ATPase. This fact was related to the properties of a sequence equivalent to the part from amino acid 59 to 72 in Escherichia coli thioredoxin. This part which joins the two lobes of the thioredoxin is more hydrophilic and more negatively charged in human thioredoxin than in Escherichia coli or spinach chloroplast thioredoxin. Although ATPase activation was obtained at a very low concentration of the reduced spinach chloroplast thioredoxin, the thioredoxin formed only a loose complex with CF1.  相似文献   

3.
Quercetin interaction with the chloroplast ATPase complex   总被引:1,自引:0,他引:1  
1. Quercetin, a flavonoid which acts as an energy transfer inhibitor in photophosphorylation is shown to inhibit the P-ATP exchange activity of membrane-bound CF1 and the ATPase activity of isolated CF1. Quercetin, affects also the proton uptake in chloroplasts in a manner similar to that of dicyclohexylcarbodiimide. 2. The light-dependent proton uptake in EDTA-treated chloroplasts is stimulated by quercetin. In untreated chloroplasts quercetin has a dual effect: it enhances at pH above 7.5 while at lower pH values it decreases the extent of H+ uptake. Similar effects were obtained with dicyclohexylcarbodiimide. 3. Like quercetin, dicyclohexylcarbodiimide was also found to inhibit the ATPase activity of isolated CF1. 4. Quercetin inhibits uncoupled electron transport induced by either EDTA-treatment of chloroplasts or by addition of uncouplers. Quercetin restores H+ uptake in both types of uncoupled chloroplasts. 5. The mode of action of quercetin and dicyclohexylcarbodiimide in photophosphorylation is discussed, and interaction with both CF1 and F0 is suggested.  相似文献   

4.
The effects of tentoxin on the ATPase activities of coupling factor 1 proteins (CF1) and photophosphorylation with isolated chloroplasts and chloroplasts reconstituted with coupling factor proteins have been examined. 1. The calcium-dependent ATPase activities of coupling factors isolated from spinach, lettuce and Nicotiana otophora are completely inhibited by tentoxin. The ATPase activities of coupling factors isolated from Nicotiana tabacum and Nicotiana knightiana are not affected by tentoxin. 2. Phenazine methosulfate-catalyzed cyclic photophosphorylation with chloroplasts isolated from spinach, lettuce and N. otophora is completely inhibited by tentoxin, whereas chloroplasts isolated from N. knightiana and N. tabacum are relatively insensitive to tentoxin. 3. Spinach chloroplasts, partially depleted in CF1, can be reconstituted with coupling factors isolated from a wide variety of plants including lettuce, radish, N. tabacum, N. knightiana and N. otophora. 4. Spinach chloroplasts reconstituted with spinach, lettuce and N. otophora CF1 retain their sensitivity to tentoxin; however, when reconstituted with N. knightiana and N. tabacum coupling factor proteins, a significant fraction of the reconstituted rate remains tentoxin insensitive. These data are interpreted as evidence that coupling factors that reconstitute with spinach thylakoid membranes have both a catalytic and structural function.  相似文献   

5.
The relationship between activation of the latent ATPase activity of isolated chloroplast coupling factor 1 (CF1) and reduction of a disulfide in the gamma subunit has been assessed. The sulfhydryl residues involved in the disulfide bond are distinct from residues normally accessible to maleimide modification during incubation of thylakoids in the dark or the light. Dithiothreitol-induced activation is time dependent, and correlates with reduction of the disulfide. Sulfhydryl residues exposed during activation can be reoxidized to disulfide by incubation with iodosobenzoate , with a concomitant loss of ATPase activity. Activation and deactivation are reversible, but deactivation is prevented by treatment of the reduced enzyme with N-ethylmaleimide. Heat activation does not reduce the disulfide bond unless dithiothreitol is present during activation. Prior heating of CF1, which partially activates the enzyme, renders the disulfide more susceptible to subsequent dithiol reduction. The activity obtained when heat and dithiothreitol are used together is approximately equal to the sum of the partial activations obtained with heat or dithiothreitol alone. Iodosobenzoate has no effect on heat-activated CF1. Enzyme activated by heating in the presence of dithiothreitol can be partially deactivated, consistent with reversal of the activity attributable to the dithiol effect. Fluorescence polarization of anilinonaphthylmaleimide bound to the reduced enzyme indicates that the sulfhydryl residues involved in the disulfide are in a less rigid environment than the other two sulfhydryl residues in the gamma subunit. Polarization of anilinonaphthylmaleimide bound to these sulfhydryls is reduced by heat treatment of CF1. The increased susceptibility of the disulfide to reduction upon heat treatment, and the activation of ATPase activity with or without disulfide bond cleavage are indicative of conformational changes within the gamma subunit that occur during the conversion of CF1 from a latent to an active ATPase. In addition the results are consistent with at least two distinct conformational forms of CF1 that can hydrolyze ATP.  相似文献   

6.
The chloroplast coupling factor 1 complex (CF1) contains an epsilon-subunit which inhibits the CF1 ATPase activity. Chloroform treatment of Chlamydomonas reinhardtii thylakoid membranes solubilizes only forms of the enzyme which apparently lack the delta-subunit. Four interrelated observations are described in this paper. (1) The dithiothreitol- (DTT) induced ATPase activation of CF1(-delta) and the DTT-induced formation of a physically resolvable CF1(-delta,epsilon) from the CF1(-delta) precursor are compared. The similar time-courses of these two phenomena suggest that the dissociation of the epsilon-subunit is an obligatory process in the DTT-induced ATPase activation of soluble CF1. (2) The reversible dissociation of the epsilon-subunit of the CF1 is demonstrated by the exchange of subunits between distinguishable oligomers. 35S-labelled chloroplast coupling factor 1 lacking the delta and epsilon subunits [CF1(-delta,epsilon)] was added to a solution of non-radioactive coupling factor 1 lacking only the delta subunit [CF1(-delta)]. After separation of the two enzyme forms, via high resolution anion-exchange chromatography, radioactivity was detected in the chromatographic fractions containing CF1(-delta). (3) epsilon-deficient CF1 can be resolved from DTT pretreated epsilon-containing CF1 for several days after the removal of DTT. On the other hand, brief incubation of the DTT pretreated epsilon-containing CF1 with low concentrations of o-iodosobenzoate results in chromatographs containing only the peak of epsilon-containing CF1. A simple explanation for this phenomenon is that reduction of CF1 with DTT increases the apparent dissociation constant for the epsilon-subunit to an estimated 3.5 x 10(-8) M (+/- 1.0 x 10(-8) M) from a value of less than or equal to 5 x 10(-11) M for the oxidized enzyme. (4) ATPase activity data show that oxidation of the epsilon-deficient enzyme does not completely inhibit its manifest activity, but oxidation of DTT pre-treated CF1 which contains the epsilon-subunit completely inhibits manifest activity. A simple model is proposed for the influence of the oxidation state of the soluble enzyme on the distribution of ATPase-inactive and ATPase-active subunit configurations.  相似文献   

7.
Conditions are reported under which purified coupling factor 1 (CF1) from spinach chloroplasts exhibits Mg2+-dependent ATPase activity of about 120 mumoles/min/mg protein. It is shown that CF1, partially activated by treatment with heat and dithiothreitol (DTT), can be further activated by octyl glucoside. The Mg2+-dependent ATPase activity increases linearly as a function of the concentration of octyl glucoside from about 20 mumoles/min/mg protein in the absence of detergent to 120 mumoles/min/mg protein in the presence 15 mM octyl glucoside. This concentration is below the critical micellar concentration (CMC) of the detergent, indicating that the monomeric form is responsible for the activation. Without treatment with heat and DTT, the Mg2+-dependent ATPase activity of CF1 is virtually zero, but can be stimulated by octyl glucoside. In this case, however, only concentrations around CMC give a substantial increase in activity (about 50 mumoles/min/mg at 28 mM octyl glucoside). Concentrations higher than CMC inhibit both latent and heat-activated CF1.  相似文献   

8.
1. Purification of the coupling factor ATPase from Rhodospirillum rubrum has been achieved by a combination of a previously described procedure with chromatography on DEAE-Sephadex A50. 2. Identification of the coupling factor ATPase during purification, and estimation of the relative amount of the enzyme in each fraction was greatly simplified by utilization of its unusual fluorescence. 3. Preparations of R. rubrum coupling factor ATPase injected into rabbits yielded antisera which were suitable for following the course of purification. 4. Judged by immunoelectrophoretic analysis and polyacrylamide gel electrophoresis the final preparation was pure. Under standardized conditions, apparently pure preparations showed fluorescence ratios at 300/350 nm of 3-6, which are considerably higher than those reported for pure CF1 from chloroplasts. 5. The enzyme lost its activity and changed its immunological identity during prolonged storage and by treatment with urea. Antisera against urea-treated enzyme showed the presence of two distinct antigens in the modified preparations.  相似文献   

9.
The activation of the ATPase activity of coupling factor 1 (CF1) from chloroplasts by several detergents was studied. Further evidence that detergent micelles are important in the activation of Ca2+-ATPase was obtained. Maximal activation of CA2+-ATPase was achieved with short-chain alkyl-beta-D-glucopyranoside (alkylglucosides) detergents. Treatment of CF1 with hexylglucoside or heptylglucoside followed by hydroxylapatite chromatography caused nearly total removal of the epsilon subunit of the enzyme, whereas treatment with decylglucoside caused less ATPase activation and less loss of the epsilon subunit. The ATPase activity of detergent-activated CF1 was inhibited by purified epsilon subunit. Detergents that form small micelles appear to be most effective in removing the epsilon subunit and in activating the Ca2+-ATPase of CF1. When present during assay, the alkylglucosides also induce a Mg2+-ATPase activity in CF1. Octyl- and nonylglucoside are most effective in promoting this reaction. If, however, CF1 deficient in the epsilon subunit was used, even decylglucoside elicited rapid Mg2+-ATPase hydrolysis. It is concluded that removal of the epsilon subunit, although necessary for the expression of Mg2+-ATPase, is not sufficient. The detergents that cause maximal displacement of the epsilon subunit are less effective in inducing Mg2+-ATPase activity. The selective removal of subunits from CF1 by specific detergents points to potential problems with the use of these detergents in the solubilization of oligomeric membrane proteins.  相似文献   

10.
Treatments that enhance the latent ATPase activity of the chloroplast coupling factor (CF1) also induce hypersensitivity of the gamma subunit toward trypsin. A number of different gamma subunit cleavage products are formed (Moroney, J. V., and McCarty, R. E. (1982) J. Biol. Chem. 257, 5910-5914). We have compared the gamma cleavage products of membrane-bound and isolated CF1, activated either by reduction of the gamma disulfide bond or by removal of the epsilon subunit. The gamma subunit of isolated CF1 lacking the epsilon subunit was cleaved to a 27,000-Da species. The same cleavage site became exposed following energy-dependent conformational changes in the membrane-bound enzyme. Activation by reduction of the gamma disulfide bond also exposed this site. However, the gamma subunit of reduced CF1 was cleaved rapidly at an additional site and trypsin treatment gave rise to a 25,000-Da gamma species. The small peptide generated by the second cleavage contains one of the cysteinyl residues of the reduced disulfide bridge of gamma. This peptide dissociates from the enzyme and can be isolated by gel filtration. The close proximity of the trypsin cleavage sites to the disulfide bond of gamma is discussed with respect to the effects of tryptic cleavage on the ATPase activity of CF1. The data indicate that structural changes in a limited region of the gamma subunit strongly influence the catalytic properties of both soluble and membrane-bound CF1.  相似文献   

11.
In leaves and intact chloroplasts, oxidation and reduction have been shown previously to regulate the ATPase activity of thylakoids. Illumination of spinach chloroplast thylakoids in the presence of dithiothreitol, which activates the ability of thylakoids to catalyze sustained ATP hydrolysis in the dark, causes increased incorporation of N-ethylmaleimide into the gamma subunit of coupling factor 1 (CF1). A disulfide bond in the gamma subunit is reduced during activation. The residues involved in this disulfide bond are the same as those in the disulfide linkage reduced during dithiothreitol activation of soluble CF1. The disulfide and dithiol forms of the gamma subunit may be separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. N-Ethylmaleimide is preferentially incorporated in the dark into the reduced form of the gamma subunit of CF1 in thylakoids previously exposed to dithiothreitol. Only a subpopulation of the CF1 in thylakoids is susceptible to dithiothreitol reduction and subsequent reaction with N-ethylmaleimide in the dark. Alkylation of the thiol groups exposed by reduction of the disulfide bond protects ATPase activity from inhibition by oxidants. At a given value of the transmembrane pH differential, photophosphorylation rates in dithiothreitol-activated thylakoids can be as much as seven to eight times those of nonactivated controls. N-Ethylmaleimide treatment of activated thylakoids in the dark prevents the loss of the stimulation of ATP synthesis on storage of the thylakoids. Photophosphorylation by intact chloroplasts lysed in assay mixtures is also activated in comparison to that by washed thylakoids. At a low ADP concentration, the rate of photophosphorylation approaches saturation as delta pH increases. These results suggest that the gamma subunit of CF1 plays an important role in regulation of ATP synthesis and hydrolysis.  相似文献   

12.
An improved procedure for the preparation of chloroplast coupling factor 1 (CF1) lacking the delta subunit is described. In addition, CF1 deficient in the epsilon subunit was isolated by a new method and CF1 lacking both of the smaller subunits was prepared. The ability of the subunit-deficient forms and of CF1, either heated or incubated with dithiothreitol to activate its ATPase activity, to bind to thylakoids from which CF1 had been removed was studied. All CF1 preparations bound in a cation-dependent manner to similar extents. CF1 lacking the delta subunit required higher cation concentrations for maximal binding. All preparations competed similarly with control CF1 for binding sites on the depleted membranes. The alpha subunit of all forms of CF1 in solution was rapidly cleaved by trypsin. After reconstitution, however, the alpha subunit of CF1, as well as of the subunit-deficient and the activated forms, was resistant to attack by trypsin. Moreover, treatment of the membranes with either trypsin or N,N'-dicyclohexylcarbodiimide inhibited the binding of all CF1 forms. These results suggest that the binding of the subunit-deficient and activated forms of CF1 is specific. CF1 lacking the epsilon subunit restored neither proton uptake nor ATP synthesis to the depleted membranes. In contrast to our previous results, CF1 lacking the delta subunit was partially effective. Previously, we used a suboptimal Mg2+ concentration for binding the delta-deficient enzyme which we show here was partially deficient in the epsilon subunit. These results show that the delta and epsilon subunits are not required for binding CF1 to the membranes and that the delta subunit is not an absolute requirement for ATP synthesis.  相似文献   

13.
One-dimensional maps of proteolytic fragments generated by digestion with Staphylococcus aureus protease in sodium dodecyl sulfate (SDS) were used to identify three polypeptides synthesized by isolated Zea mays chloroplasts. This technique does not depend upon proper incorporation of the newly synthesized polypeptides into a more complex structure for their identification. The only preliminary purification required is electrophoretic separation on SDS-polyacrylamide gels. The pattern of radioactive fragments from labeled proteins which co-migrate with the alpha and beta subunits of chloroplast coupling factor (CF1) corresponds precisely to the pattern of stainable fragments derived from subunits of the purified enzyme. A 34,500-dalton protein is the major membrane-associated product of protein synthesis by isolated maize chloroplasts. From the similarity in the fragments formed by digestion with S. aureus protease, it appears that this radioactive protein is probably a precursor of a 32,000-dalton protein which is a component of the thylakoid. The alpha and beta subunits of CF1 newly synthesized by isolated chloroplasts are not fully extractable by procedures which normally solubilize the enzyme from membranes. The 34,500-dalton protein is not processed to the 32,000-dalton form in any great amount by isolated chloroplasts. A 19,000-dalton fragment of the 32,000-dalton protein is protected from digestion when thylakoids are treated with proteases, while the newly synthesized 34,500-dalton protein is fully susceptible. The isolated chloroplast does not appear to be able to fully integrate these newly made proteins into the membrane structure.  相似文献   

14.
1. Chemical modification by o-iodosobenzoate of soluble chloroplast coupling factor 1 (CF1) during heat activation resulted in inhibition of its Ca-ATPase activity and in the formation of two new intrapeptide disulfide bridges as suggested by: (a) the disappearance of three out of four accessible thiol groups, two from gamma and one from a beta subunit as a consequence of CF1 modification by o-iodosobenzoate; (b) the total free sulphydryl groups of CF1 were reduced from 8 to 4 after modification of CF1 by o-iodosobenzoate. Two groups disappeared from beta and two from gamma subunits; (c) a second heating step of CF1 in the presence of 10 mM dithioerythritol reversed the inhibition of the ATPase and reduced both the newly formed disulfide bridges and those present in native CF1. 2. Modification of chloroplasts in the light with o-iodosobenzoate resulted in the inhibition of photophosphorylation and ATPase. CF1 isolated and purified from these chloroplasts had its Ca-ATPase activity inhibited and two new disulfide bridges. The total number of free sulphydryl groups was reduced from 8 to 4 and three accessible groups disappeared from beta and gamma subunits.  相似文献   

15.
The effect of redox and chelating reagents on the ATPase and ATP-synthetase activity in chloroplast membranes as well as the ATPase activity of isolated CF1-coupling factor from chloroplasts has been studied. The Mg2+-ATPase in thylakoid membranes and isolated Ca2+-ATPase is stimulated by dithionite. In the presence of reduced glutathione the effect of dithionite is similar to those of prolonged illumination or heating. Dichlorophenolindophenol partially inhibits this activity as well as citrate, tenoyltrifluoroacetone and the excess fo ATP. Photophosphorylation in chloroplast lamellae is inhibited with dithionite. It is suggested that the membrane bound ATPase from chloroplasts may be in two structural states which differ in their enzymic activity and in the coupling to electron transfer in membrane. The transitions between these states can be induced by redox reagents.  相似文献   

16.
The effects of crosslinking agent-DFDNB (difluoro dinitro benzene) on functions of chloroplast thylakoid membrane proteins were investigated. DFDNB inhibited activities of PSP and membrane-bound ATPase in chloroplasts. It decreased proton uptake of light-inducted chloroplast thylakoids and the relative value of fluorescence quenching of 9-aminoacridine, and inhibited the rate of fast electrogenic phase of absorption change at 515 nm in chloroplasts. In addition, the isolated CF1-ATPase was crosslinked with DFDNB. The pattern of polymers of crosslinked CF1-ATPase was observed on SDS-PAGE.  相似文献   

17.
1. Grinding of epimastigotes of Trypanosoma cruzi with glass powder in a mortar yielded a Mg2+-activated adenosine triphosphatase (ATPase) preparation which was highly sensitive to oligomycin. 2. Chloroform treatment of the particles resulted in the solubilization of an ATPase which was (a) activated by MgCl2; (b) slightly inhibited by CaCl2; (c) activated by sulphite and bisulphite; (d) had an optimum pH of 7.6; and (e) had a Km for ATP of 2.1 mM (in the presence of 4 mM MgCl2). 3. The solubilized enzyme was insensitive to oligomycin and leucinostatin, which inhibited the membrane-bound ATPase, though inhibited by efrapeptin and quercetin. 4. The results indicate that the chloroform-extracted enzyme is a soluble F1-ATPase similar to those isolated from mammalian mitochondria.  相似文献   

18.
Cyanobacterial (Spirulina platensis) photosynthetic membranes and isolated F1 ATPase were characterized with respect to ATP activity. The following results indicate that the regulation of expression of ATPase activity in Spirulina platensis is similar to that found in chloroplasts: the ATPase activity of Spirulina membranes and isolated F1 ATPase is mostly latent, a characteristic of chloroplast ATPase activity; treatments that elicit ATPase activity in higher plant chloroplast thylakoids and isolated chloroplast coupling factor (CF1) greatly stimulate the activity of Spirulina membranes and F1, and the cation specificity of chloroplast ATPase activity, e. g., light-induced membrane activity that is magnesium dependent and trypsin-activated CF1 activity that is calcium dependent, is also observed in Spirulina. Thus, an 8- to 15-fold increase in specific activity (to 13-15 mumol Pi min-1 mg chl-1) is obtained when Spirulina membranes are treated with trypsin (CaATPase) or with methanol (MgATPase): a light-induced, dithiothreitol-dependent MgATPase activity is also found in the membranes. Purified Spirulina F1 is a CaATPase when activated with trypsin (endogenous activity increases from 4 to 27-37 mumol Pi min-1 mg protein-1) or with dithiothreitol (5.6 mumol Pi min-1 mg-1), but a MgATPase when assayed with methanol (18-20 mumol Pi min-1 mg-1). The effects of varying calcium and ATP concentrations on the kinetics of trypsin-induced CaATPase activity of Spirulina F1 were examined. When the calcium concentration is varied at constant ATP concentration, the velocity plot shows a marked sigmoidicity. By varying Ca-ATP metal-nucleotide complex concentration at constant concentrations of free calcium or ATP, it is shown that the sigmoidicity is due to the effect of free ATP, which changes the Hill constant to 1.6 from 1.0 observed when the free calcium concentration is kept constant at 5 mM. Therefore not only is ATP an inhibitor but it is also an allosteric effector of Spirulina F1 ATPase activity. At 5 mM free calcium, the Km for teh Ca-ATP metal-nucleotide complex is 0.42 mM.  相似文献   

19.
(1) Photophosphorylation, Ca2+-ATPase and Mg2+-ATPase activities of isolated chloroplasts were inhibited 55--65% when the chemical potential of water was decreased by dehydrating leaves to water potentials (psi w) of --25 bars before isolation of the plastids. The inhibition could be reversed in vivo by rehydrating the leaves. (2) These losses in activity were reflected in coupling factor (CF1) isolated from the leaves, since CF1 from leaves with low psi w had less Ca2+-ATPase activity than control CF1 and did not recouple phosphorylation in CF1-deficient chloroplasts. In contrast, CF1 from leaves having high psi w only partially recoupled phosphorylation by CF1-deficient chloroplasts from leaves havig low psi w. This indicated that low psi w affected chloroplast membranes as well as CF1 itself. (3) Coupling factor from leaves having low psi w had the same number of subunits, and the same electrophoretic mobility, and could be obtained with the same yields as CF1 from control leaves. However, direct measurements of fluorescence polarization, ultraviolet absorption, and circular dichroism showed that CF1 from leaves having low psi w differed from control CF1. The CF1 from leaves having low psi w also had decreased ability to bind fluorescent nucleotides (epsilon-ATP and epsilon-ADP). (4) Exposure of isolated CF1 to low psi w in vitro by preincubation in sucrose-containing media inhibited the Ca2+-ATPase activity of the protein in subsequent assays without sucrose. Inclusion of 5 or 10 mM Mg2+ in the preincubation medium markedly inhibited Ca2+-ATPase activity. (5) These results show that CF1 undergoes changes in cells which alter its phosphorylating ability. Since low cell psi w changed the spectroscopic properties but not other protein properties of CF1, the changes were most likely caused by altered confurn, photophosphorylation. The inhibition of ATPase activity in CF1 in vitro at low psi w and high ion concentration mimicked the change in activity seen in vivo.  相似文献   

20.
The treatment of chloroplast coupling factor 1 (CF1) with dithiothreitol or with trypsin modifies the gamma subunit. Reduction of the gamma subunit disulfide bond in CF1 in solution with dithiothreitol enhances the dissociation of epsilon (Duhe, R. J., and Selman, B. R. (1990) Biochim. Biophys. Acta 1017, 70-78). The Ca(2+)-ATPase activity of either oxidized or reduced CF1 increases as the enzyme is diluted. Added epsilon subunit inhibits the Ca(2+)-ATPase activity of both forms of the diluted CF1, suggesting that epsilon dissociation is the cause of activation by dilution. Half-maximal activation occurred at much higher concentrations of the reduced CF1, indicating that reduction decreases the affinity for epsilon about 20-fold. Immunoblotting techniques show that there is only one epsilon subunit/CF1 in intact chloroplasts, in thylakoid membranes, and in solution. No epsilon is released from CF1 in thylakoids under conditions of ATP synthesis. The gamma subunit of CF1 in illuminated thylakoids is specifically cleaved by trypsin. CF1 purified from thylakoids treated with trypsin in the light is deficient in epsilon subunit, and has a high rate of ATP hydrolysis. Added epsilon neither inhibits the ATPase activity of, nor binds tightly to the cleaved enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号