首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increases in the brain concentrations of tryptophan and in serotonin (5-HT) metabolism are commonly observed in animals under stress. Previous experiments indicated that the increase in brain tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) observed in response to administration of endotoxin (lipopolysaccharide, LPS) and interleukin-1 (IL-1) were largely prevented by pretreatment with N-nitro-L-arginine methylester (L-NAME), an inhibitor of NO synthase (NOS). Therefore we tested whether the increases in tryptophan and 5-HT metabolism observed following restraint and footsthock were similarly affected. Mice were injected with L-NAME (30 mg/kg) or saline and restrained for 40 min. Restraint caused increases in concentrations of tryptophan and the catabolites of dopamine (DA), norepinephrine (NE) and 5-HT in the medial prefrontal cortex, hypothalamus, and brain stem. The L-NAME pretreatment significantly attenuated, but did not prevent, the changes in tryptophan and catecholamine metabolism, with a very small effect on the increase in plasma corticosterone. When mice pretreated with L-NAME were subjected to 30 min footshock, the NOS inhibitor had no statistically significant effects on the increases in DA, NE and 5-HT metabolism, but tended to attenuate the increases in tryptophan. We interpret these results to indicate that NOS plays a relatively small role in the cerebral neurochemical responses to restraint and footshock, but the role in the restraint-induced changes was greater than that in the footshock-induced ones. The attenuation of the restraint-related effects on the catecholamines most probably reflects a contribution to the CNS responses from peripheral vascular changes which are likely to be limited by the inhibition of NOS.  相似文献   

2.
The potential contribution of stress-induced bacterial translocation to the activation of the hypothalamo-pituitary-adrenocortical (HPA) axis and brain biogenic amines was assessed. Mice were restrained for various periods, and brain concentrations of tryptophan, catecholamines, serotonin, and their metabolites, plasma corticosterone, and the translocation of viable bacteria from the gastrointestinal tract to the mesenteric lymph nodes, spleen, and liver were measured. Restraint induced the translocation of indigenous gram-positive bacteria in only a small proportion of animals, but translocation of gram-negative bacteria did not occur. Restraint induced short-lived increases in plasma corticosterone and brain amine metabolism, whereas bacterial translocation was slower and persisted long after the HPA axis and neurochemical responses had dissipated. When mice were infected with Salmonella typhimurium, spontaneous translocation occurred and plasma corticosterone, interleukin-6 concentrations, and brain catecholamine and indoleamine metabolism were elevated. These findings indicate that the translocation of indigenous gastrointestinal bacteria did not contribute to the HPA axis and neurochemical changes induced by restraint. However, translocation of nonindigenous S. typhimurium with or without restraint did induce HPA and neurochemical responses.  相似文献   

3.
Abstract: In vivo microdialysis was used to measure changes in extracellular concentrations of catecholamines and indoleamines in freely moving rats in response to administration of corticotropin-releasing factor (CRF). Dialysis probes were placed stereotaxically in either the medial hypothalamus or the medial prefrontal cortex. We used a repeated-measures design in which each rat received artificial CSF or one dose of CRF 3–4 h apart, and each subject was retested with the same treatments in the reverse order 5–7 days later. With the dialysis probe in the hypothalamus, intracerebroventricular administration of CRF (17 or 330 pmol) dose-dependently increased dialysate concentrations of norepinephrine (NE), dopamine (DA), and all their measurable catabolites except normetanephrine. The effects on NE were substantially greater than those on DA. Dialysate concentrations of serotonin could not be measured reliably, but those of its catabolite, 5-hydroxyindoleacetic acid, were also elevated. Concentrations of NE and DA were elevated within the first one or two (20 min) collection periods, with a peak response at ∼ 1–2 h. Dialysate concentrations of catecholamines and metabolites normally returned to baseline within 3 h. Similar data were obtained with dialysis probes in the medial prefrontal cortex after intracerebroventricular administration of 17 or 167 pmol of CRF, except that the increases in DA exceeded those of NE in this region. Intraperitoneal administration of CRF (1 nmol) similarly elevated dialysate concentrations of NE, DA, 5-hydroxyindoleacetic acid, and all catecholamine catabolites except normetanephrine in both medial hypothalamus and medial prefrontal cortex. These results support earlier neurochemical data suggesting that CRF administered both centrally and peripherally stimulates the release of both DA and NE in the brain.  相似文献   

4.
G R Van Loon  A Shum  D Ho 《Peptides》1982,3(5):799-803
Catecholamine and serotonin neurons in the hypothalamus regulate the secretion of corticotropin releasing factor (CRF). We considered the possibility that CRF might in turn affect the activity of these aminergic neurons. We examined the effect of intracisternal administration of synthetic CRF on the synthesis turnover rates of dopamine and serotonin in the hypothalamus of adult male rats using two different methods to assess turnover. In one study, we measured the accumulation of L-dihydroxyphenylalanine (L-DOPA) or 5-hydroxytryptophan (5-HTP) in mediobasal hypothalamus after L-aromatic amino acid decarboxylase inhibition with m-hydroxybenzylhydrazine 20 min before sacrifice, and in the second study we measured the accumulation of dopamine, norepinephrine, epinephrine and serotonin after monoamine oxidase inhibition with pargyline 20 min before sacrifice. The commercial CRF which we administered intraarterially increased plasma ACTH and corticosterone concentrations. Intracerebral CRF 5 to 20 micrograms 20 min before sacrifice or 20 micrograms 110 min before sacrifice did not alter the m-hydroxybenzylhydrazine-induced accumulation of L-DOPA or 5-HTP when compared with saline vehicle-injected controls. CRF 20 micrograms did not alter basal concentration or pargyline-induced accumulation of the catecholamines or serotonin in whole hypothalamus when compared with saline vehicle-injected controls. Thus, intracisternal administration of CRF did not alter hypothalamic dopamine or serotonin synthesis rates as assessed by two nonsteady state turnover methods. The data suggest that the release of CRF from neurons in hypothalamus does not alter the activity of catecholamine or serotonin neurons in the hypothalamus of normal adult male rats.  相似文献   

5.
Painful stimuli led to a decrease of the radioactive catecholamine pool in adrenalectomized rats. Intraventricular administration of both tritiated noradrenaline and ACTH produced a greater decrease of the labelled catecholamine pool than in the control adrenalectomized rats in 12 to 18 hr following injection. Blocking of monoamino-oxidase activity or biosynthesis by systemic administration of Pargyline or alpha-methyl-tyrosine did not prevent the effect of ACTH on brain catecholamines. It is concluded that ACTH exerts a direct influence on the brain catecholaminergic system and that this effect might be involved in ACTH dependent behavioural responses.  相似文献   

6.
Stressful treatments and immune challenges have been shown previously to elevate brain concentrations of tryptophan. The role of the autonomic nervous system in this neurochemical change was investigated using pharmacological treatments that inhibit autonomic effects. Pretreatment with the ganglionic blocker chlorisondamine did not alter the normal increases in catecholamine metabolites, but prevented the increase in brain tryptophan normally observed after footshock or restraint, except when the duration of the footshock period was extended to 60 min. The footshock- and restraint-related increases in 5-hydroxyindoleacetic acid (5-HIAA) were also prevented by chlorisondamine. The increases in brain tryptophan caused by intraperitoneal injection of endotoxin or interleukin-1 (IL-1) were also prevented by chlorisondamine pretreatment. The footshock-induced increases in brain tryptophan and 5-HIAA were attenuated by the beta-adrenergic antagonist propranolol but not by the alpha-adrenergic antagonist phenoxybenzamine or the muscarinic cholinergic antagonist atropine. Thus the autonomic nervous system appears to be involved in the stress-related changes in brain tryptophan, and this effect is due to the sympathetic rather than the parasympathetic limb of the system. Moreover, the main effect of the sympathetic nervous system is exerted on beta- as opposed to alpha-adrenergic receptors. We conclude that activation of the sympathetic nervous system is responsible for the stress-related increases in brain tryptophan, probably by enabling increased brain tryptophan uptake. Endotoxin and IL-1 also elevate brain tryptophan, presumably by a similar mechanism. The increase in brain tryptophan appears to be necessary to sustain the increased serotonin catabolism to 5-HIAA that occurs in stressed animals, and which may reflect increased serotonin release.  相似文献   

7.
The purpose of this study was to examine the gastrin-releasing peptide (GRP) mediated regulation of 5-HT neuronal activity in the paraventricular nucleus of the hypothalamus under basal and restraint stress conditions. Intracerebroventricular (icv) administration of GRP (1, 10, 100 ng/rat) increased 5-HIAA concentrations in the paraventricular nucleus (PVN) of the hypothalamus, but was without effect in the accumbens, suprachiasmatic and arcuate nuclei. Administration of (Leu(13)-psi-CH(2)NH-Leu(14)) Bombesin (10, 100 and 1000 ng/rat; icv), a GRP antagonist, had no effect by itself on PVN serotonergic activity; however, a dose of 1 microg/rat of this compound, completely blocked the increase of 5-HIAA concentrations induced by GRP (10 ng). Restraint stress increased serotonergic activity -as shown by an elevation of 5-HIAA in the PVN- as well as plasma ACTH and corticosterone. This stress-induced activation of both the serotonergic neurons and the hypothalamus-pituitary-adrenal axis was blocked by CRF and GRP antagonists. Interestingly, when the activation of hypothalamic 5-HT neurons was induced by GRP administration, alpha-helical (9-41) CRF was ineffective.These data suggest that GRP, by acting on GRP receptors but not via CRF receptors, increases 5-HT neuronal activity in the PVN. In turn, it appears that endogenous GRP and CRF receptor ligands are both simultaneously involved in the regulation of the increase in 5-HT neuronal activity, ACTH and corticosterone secretion, under stress conditions.  相似文献   

8.
Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.  相似文献   

9.
X N Yu  G Komaki  N Sudo  C Kubo 《Life sciences》2001,69(2):167-174
Several recent reports indicate that exercise elevates the plasma interleukin 6 levels; however, the precise regulation of such an elevation still remains to be clarified. In this study, in order to clarify the requirements of central and peripheral catecholaminergic system for this exercise-induced interleukin 6 elevation, rats were either intraperitoneally or intracerebroventricularly injected with 6-hydroxydopamine which depletes the catecholamine in the central or peripheral tissues. As a result, our exercise protocol elevated the plasma interleukin 6, ACTH, and corticosterone levels in response to exercise. All such exercise-induced increases in the interleukin 6, ACTH, and corticosterone levels were significantly inhibited by pretreatment with an intracerebroventricular injection of 6-hydroxydopamine. In the intraperitoneal 6-hydroxydopamine-treated animals, the exercise-induced interleukin 6 elevation was significantly suppressed compared with the vehicle-treated animals, although no significant difference was found in either the ACTH level or the corticosterone level between both groups of animals. These results thus suggest that central and peripheral catecholamines are involved in the regulation of the exercise-induced interleukin 6 elevation.  相似文献   

10.
The concentrations of catecholamine and indoleamine metabolites were measured in intact and adrenalectomized mice to determine whether adrenal hormones mediate or modulate the stress-induced responses. Thirty minutes of footshock resulted in significant increases of the ratios of the dopamine (DA) catabolite, dihydroxyphenylacetic acid (DOPAC), to DA in prefrontal cortex, nucleus accumbens, striatum, hypothalamus, and brainstem, and of homovanillic (HVA)/DA ratios in nucleus accumbens, striatum, amygdala, and hypothalamus. Ratios of 3-methoxy-4-hydroxyphenylethyleneglycol to norepinephrine (NE) were also increased in prefrontal cortex, nucleus accumbens, septum, amygdala, hypothalamus, hippocampus, and brainstem. The concentration of NE was decreased in amygdala. 5-Hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT, serotonin) ratios and free tryptophan were also increased in every brain region. Very similar data were obtained from mice restrained for 30 min. Adrenalectomy resulted in increased HVA/DA ratios in prefrontal cortex and striatum, and 5-HIAA/5-HT in septum. The stress-related changes were largely similar in adrenalectomized mice. Significant interactions between adrenalectomy and footshock treatment occurred in prefrontal cortical DOPAC/DA and hypothalamic NE which was depleted only in adrenalectomized mice, suggesting tendencies for these measures to be more responsive in adrenalectomized mice. Corticosterone administration (0.5-2.0 mg/kg s.c.) which resulted in plasma concentrations in the physiological range did not alter the concentrations of the cerebral metabolites measured in any region. We conclude that adrenal hormones do not mediate cerebral catecholamine or indoleamine metabolism in stress, although adrenalectomy may affect HVA and 5-HIAA metabolism, and there was a tendency for catecholamines to be more sensitive to stress in adrenalectomized animals.  相似文献   

11.
Corticotropin-releasing factor (CRF), a peptide isolated from ovine hypothalamus, and sauvagine, a peptide isolated from frog skin, share significant structural homology and elicit a number of similar biological responses. CRF is more potent than sauvagine in stimulating pituitary ACTH secretion. Sauvagine, however, is 5–10 times more potent than CRF to act within the brain to increase plasma levels of catecholamines and glucose and to elevate mean arterial pressure. Sauvagine is likewise more potent than CRF to act outside the brain to increase superior mesenteric artery flow and plasma glucose concentrations and to decrease mean arterial pressure. CRF and sauvagine produce important effects representative of biologically active peptides.  相似文献   

12.
The circadian rhythm of serum corticosterone was assessed in rats entrained to a 12:12 LD cycle and treated with tricyclic imipramine (25 mg/kg/day) via osmotic pumps for a period of 14 days; urinary excretion of catecholamines, serotonin and their catabolites was also assessed. We observed that imipramine did not modify the phase position of the corticosterone rhythm but rather lowered the animal's responsiveness as shown by the lower peak of corticosterone at 2000 and by the smaller amplitude of its circadian rhythm; moreover imipramine had no effect on urinary excretion of catecholamines, serotonin and their catabolites during LD cycle.  相似文献   

13.
Plasma levels of norepinephrine (NE) and epinephrine (EPI) were measured in male Sprague-Dawley rats before and at several times after training injections of agents known to enhance or to impair later retention performance for a one-trial inhibitory (passive) avoidance task. Two days before testing, each animal was surgically prepared with a chronic tail artery catheter that allows for repeated blood sampling in unhandled rats. Exposure to a single, intense training footshock (3.0 mA, 2.0 sec duration) resulted in an immediate but transient increase in plasma levels of EPI and to a lesser extent NE. Plasma levels of both catecholamines did not differ between unshocked controls and animals that received a weak training footshock (0.6 mA, 0.5 sec duration). An injection of EPI at a dose that enhances retention performance (0.1 mg/kg, sc) resulted in increments in plasma EPI levels of 0.8-1.9 ng/ml from 5 to 40 min after injection. An injection of EPI (0.5 mg/kg, sc) at a dose that produces retrograde amnesia resulted in increments in plasma EPI ranging from 3.7 to 4.5 ng/ml during the 40 min after injection. Plasma NE levels were not significantly altered following an EPI injection. A single injection of adrenocorticotropin (ACTH, 0.3 or 3.0 IU per rat) did not alter the plasma catecholamine responses to training with a weak footshock. Similarly, the synthetic ACTH analog, Organon 2766 (125 or 250 mg/Kg) did not affect plasma catecholamines in untrained (unshocked) rats.These results demonstrate that significant increments in plasma levels of NE and EPI occur shortly after inhibitory avoidance training. Furthermore, an injection of EPI that enhances retention of an inhibitory avoidance task mimics the magnitude, though not the temporal characteristics, of the endogenous adrenal medullary response to a training footshock. Other hormonal treatments (ACTH and Organon 2766) which enhance memory storage do not affect plasma levels of NE and EPI.  相似文献   

14.
Here, we report that emotional stressors (restraint, footshock) can affect humoral immune responses as well as the capacity of immune and accessory cells to secrete interleukins. Acute restraint stress (5 min) caused a 4- to 6-fold enhancement of splenic antibody responses to sheep red blood cells. In an attempt to study endocrine mechanisms, we administered antibodies raised in rats to corticotropin releasing factor (CRF). Intravenous administration of these antibodies prior to stress-exposure and immunization prevented the stress-induced increase in the humoral response. In a parallel experiment, we observed that CRF-immunoneutralization prevented the restraint stress-induced increase in plasma ACTH concentrations, but was without effect on plasma prolactin, melanocyte stimulating hormone, adrenaline and noradrenaline responses. These data suggest the presence of an indirect pathway involving ACTH and related peptides by which CRF controls humoral responses to stress. A pathway involving a direct mechanism of CRF at the level of the immune cells will be discussed. In a set of other experiments, we addressed the question of whether interleukin-1 and interleukin-6 plasma levels induced by injection of endotoxin could be modulated by emotional stress. Exposure to prolonged footshock stress (20 min) prior to endotoxin injection resulted in a blunted plasma ACTH and interleukin-1 response, without affecting the endotoxin-induced plasma interleukin-6 respose. These data suggest that at least one level at which emotional stress may influence immune function is by changing the capacity of immune cells to produce and/or secrete immune regulatory interleukins.  相似文献   

15.
Ether-laparotomy stress produced a rapid increase in rat hypothalamic CRF concentration, followed by a rapid reduction and subsequent increase. Cold-restraint stress significantly reduced hypothalamic CRF concentration at 15 min after stress onset. Serum ACTH and corticosterone levels were significantly elevated at 15 min after the onset of both stresses. The CRF responses in the medulla oblongata were not similar to the hypothalamic CRF responses. Norepinephrine concentration in the hypothalamus was reduced, whereas dopamine concentration in the hypothalamus and medulla oblongata was significantly increased. Epinephrine concentrations in these tissues did not show any significant change throughout the stress period. The observations lead to the following conclusions: hypothalamic CRF plays a major role in stimulating ACTH secretion under acute stress; the reduction in hypothalamic CRF is due to an excess release in the early phase of acute stress; hypothalamic CRF and medulla oblongata CRF are controlled by different mechanisms; norepinephrine in the hypothalamus may not be involved in stimulating hypothalamic CRF secretion in the early phase of acute stress; and catecholamines are regulated differently in the hypothalamus and medulla oblongata.  相似文献   

16.
The ingestion of large neutral amino acids (LNAA), notably tryptophan, tyrosine and the branched-chain amino acids (BCAA), modifies tryptophan and tyrosine uptake into brain and their conversion to serotonin and catecholamines, respectively. The particular effect reflects the competitive nature of the transporter for LNAA at the blood–brain barrier. For example, raising blood tryptophan or tyrosine levels raises their uptake into brain, while raising blood BCAA levels lowers tryptophan and tyrosine uptake; serotonin and catecholamine synthesis in brain parallel the tryptophan and tyrosine changes. By changing blood LNAA levels, the ingestion of particular proteins causes surprisingly large variations in brain tryptophan uptake and serotonin synthesis, with minimal effects on tyrosine uptake and catecholamine synthesis. Such variations elicit predictable effects on mood, cognition and hormone secretion (prolactin, cortisol). The ingestion of mixtures of LNAA, particularly BCAA, lowers brain tryptophan uptake and serotonin synthesis. Though argued to improve physical performance by reducing serotonin function, such effects are generally considered modest at best. However, BCAA ingestion also lowers tyrosine uptake, and dopamine synthesis in brain. Increasing dopamine function in brain improves performance, suggesting that BCAA may fail to increase performance because dopamine is reduced. Conceivably, BCAA administered with tyrosine could prevent the decline in dopamine, while still eliciting a drop in serotonin. Such an LNAA mixture might thus prove an effective enhancer of physical performance. The thoughtful development and application of dietary proteins and LNAA mixtures may thus produce treatments with predictable and useful functional effects.  相似文献   

17.
In the rat, intracerebroventricular injection of synthetic ACTH (ACTH1–24, ACTH1–16) elevated plasma corticosterone levels and induced the display of excessive grooming behavior. The grooming response could be elicited in hypophysectomized rats without concommittant elevation of plasma corticosterone. In intact rats subcutaneous injection of ACTH1–24 and not of ACTH1–16-NH2 stimulated the release of adrenal corticosteroids, whereas no excessive grooming was observed. In contrast to the reduced effectiveness of a second icv injection of ACTH in inducing the behavioral response, no single-dose tolerance was observed for the effect of icv ACTH on the pituitary-adrenal system. Therefore it was concluded that two different central mechanisms underly the observed responses to the icv applied ACTH.  相似文献   

18.
Abstract— The rates of brain tyrosine and tryptophan hydroxylation, estimated in vivo from the accumulation of DOPA and 5-hydroxytryptophan after the administration of a decarboxylase inhibitor, appear dependent on the availability of oxygen as a substrate. During two types of physical stress, electroshock and curare-immobilization, the rate of brain tyrosine hydroxylation was greater than in unstressed controls and was not significantly decreased when the stresssed animals were made hypoxic. The loss of oxygen dependence by brain tyrosine hydroxylation during stress was observed in several brain regions and was not associated with alterations in the concentrations of brain tyrosine. tryptophan, serotonin, dopamine or norepinephrine. The rate of brain tryptophan hydroxylation was not affected by stress and remained oxygen dependent. The increase in catecholamine synthesis during stress appears to be the result of increased catecholaminergic nerve impulse flow. These experiments are consistent with the hypothesis that during neuronal stimulation an allosteric change in tyrosine hydroxylase increases the affinity of the enzyme for oxygen allowing greater catecholamine synthesis despite limiting concentrations of this substrate.  相似文献   

19.
Monoaminergic systems are important modulators of the neuroendocrine, autonomic, and behavioral responses to stress-related stimuli. The male roughskin newt (Taricha granulosa) was used as a model system to investigate the effects of corticotropin-releasing factor (CRF) or corticosterone administration on tissue concentrations of norepinephrine, epinephrine, dopamine, 3,4-dihydroxyphenylacetic acid, serotonin, and 5-hydroxyindoleacetic acid (5-HIAA) in microdissected brain areas. Intracerebroventricular infusion of 25 or 50 ng of CRF increased locomotor activity and site-specifically increased dopamine concentrations within the dorsomedial hypothalamus 30 min after treatment when compared to vehicle-treated controls. In further studies, male newts were treated as follows: (1) no injection, no handling, (2) saline injection, or (3) 10 microg corticosterone and then placed in a novel environment. Monoamine and monoamine metabolite concentrations were similar in the unhandled and saline-injected controls 20 min after treatment. In contrast, corticosterone-injected newts had elevated concentrations of dopamine, serotonin, and 5-HIAA in the dorsomedial hypothalamus (a region that contains dopamine- and serotonin-accumulating neuronal cell bodies in representatives of all vertebrate classes) but not in several other regions studied. These site-specific neurochemical effects parallel neurochemical changes observed in the dorsomedial hypothalamic nucleus of mammals following exposure to a variety of physical and psychological stress-related stimuli. Therefore, these changes may reflect highly conserved, site-specific neurochemical responses to stress and stress-related neurochemicals in vertebrates. Given the important role of the dorsomedial hypothalamus in neuroendocrine, autonomic, and behavioral responses to stress, and a proposed role for this region in fast-feedback effects of glucocorticoids on the hypothalamo-pituitary-adrenal axis, these stress-related monoaminergic changes are likely to have important physiological or behavioral consequences.  相似文献   

20.
Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (α-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-α-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POMC mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 µg/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-α-MSH immunoreactivity and POMC mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-α-MSH immunoreactivity and POMC mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POMC neurons in the hypothalamus and an increased mRNA expression of these neuropeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号