首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N A Setkov  V N Kazakov 《Tsitologiia》1989,31(11):1339-1344
Serum-deprived (0.2%) resting NIH 3T3 mouse fibroblasts preincubated with cycloheximide (7.5 micrograms/ml) were fused with stimulated cells taken 10 hours after changing the medium to the one containing 10% serum, and DNA synthesis was investigated in nuclei of heterodikaryons, homodikaryons, and monokaryons, using radioautography with double-labeling technique. Preincubation of resting cells with the inhibitor of protein synthesis cycloheximide for 4, 3, 2, but not for 1 or 0.5 hours abolishes their ability to suppress DNA synthesis in stimulated nuclei in heterodikaryons. Three hours after the removal of cycloheximide from the media, the resting cells acquire once again the inhibitory effect towards the entry of stimulated nuclei into the S-period. The data suggest that the resting cells may produce a labile endogenous inhibitor of cell proliferation, and support the idea on the active metabolic processes occurring in the resting cells.  相似文献   

2.
Serum-deprived (0.5%) resting NIH 3T3 mouse fibroblasts were fused with stimulated cells taken at 2 hour intervals after changing the medium to the one containing 10% serum, and DNA synthesis was investigated in monokaryons, homodikaryons, and heterodikaryous using radioautography with double-labeling technique. The presence of the resting nucleus in the common cytoplasm has an inhibitory effect on the entry of the stimulated nucleus into the S period in the medium containing either 0.5 or 10% serum, but DNA synthesis continues. After a 24 hour stay in the common cytoplasm with resting nuclei the stimulated nuclei return into the state of rest. When resting cells are stimulated by 10% serum, their inhibitory effect on stimulated nuclei in heterodikaryons still persists for at least 2 hours following stimulation. Preincubation of resting cells with cycloheximide for 4 hours abolishes their ability to suppress DNA synthesis in stimulated nuclei. The data suggest that the resting cells produce an endogenous inhibitor of cell proliferation whose formation depends upon the synthesis of protein(s). When stimulated, cell can proliferate only upon decreasing the level of this inhibitor. The obtained results are consistent with the idea of a negative control of cell proliferation.  相似文献   

3.
Using radioautography and cell fusion technique, we studied cell kinetics and functional properties of NIH 3T3 mouse fibroblasts stimulated to proliferate after being quiescent for 3, 7 and 14 days. The resting state was achieved by cultivating cells in the medium with 0.5% of serum, the stimulation being achieved by replacement of the depleted medium for a fresh one containing 10% of serum. It was found that the longer cells had been kept resting, the longer their prereplicative period lasted after the stimulation, the lesser was the fraction of cells that entered the S-period. Cell-fusion experiments revealed that the ability of the resting nuclei to suppress the onset of DNA synthesis in the nuclei of stimulated cells in heterodikaryons increased as the cells stayed in the resting state before fusion, and that the period of suppression was prolonged. The data are consistent with the idea of cells going into deeper resting states. It may be concluded that the resting cells undergo a gradual development resulting in the changes of their functional properties.  相似文献   

4.
Serum-deprived (0.1-0.2%) resting NIH 3T3 mouse fibroblasts pre-incubated with cycloheximide (7.5 micrograms/ml), or puromycin (10 micrograms/ml), were fused with stimulated cells taken 10 h after changing the medium to one containing 10% serum, and DNA synthesis was investigated in the nuclei of monokaryons, homodikaryons and heterodikaryons using radioautography with the double-labelling technique. Pre-incubation of resting cells with inhibitors of protein synthesis for 1-4 h abolished their ability to suppress DNA synthesis in stimulated nuclei in heterokaryons. Three hours after the removal of cycloheximide from the medium, the resting cells acquired once again the inhibitory capacity for entry of stimulated nuclei into the S period. This inhibitory influence disappeared also in the case of post-fusion cycloheximide application as well as following an 8-12 h pre-treatment of resting cells with actinomycin D (1 microgram/ml) prior to fusion. Pre-incubation of resting cells for 12 h with PDGF (1 u/ml-1) followed by an 8-48 h incubation in serum-free medium stimulated the onset of DNA synthesis. A brief exposure (45 min) of resting cells to cycloheximide (7.5 micrograms/ml), or puromycin (7.5 micrograms/ml), exerted a similar effect, inducing by itself the entry of cells into the S period. The results support the assumption that acquirement, by resting cells, of competence for DNA replication includes as a necessary step the down-regulation of intracellular growth inhibitors whose formation depends on protein synthesis.  相似文献   

5.
To study further the factors providing for cellular quiescence, we used okadaic acid (OA) at concentrations (0.1, 1, 10 or 100 nM) inhibiting type 1 and/or type 2A protein phosphatases in mammalian cell cultures. Brief (2 h) exposure of resting (0.2% serum for 72 h) NIH 3T3 mouse fibroblasts to OA with subsequent incubation of cells in a medium with 0.2% serum, stimulated DNA synthesis at all concentrations studied. Maximal stimulation was observed following pre-incubation of resting cells with 10 nM OA. Treatment of cycling cells (10% serum) with OA (2 h pulses at 12 h intervals for 72 h) prevented their exit to the resting state on transfer to a medium with 0.2% serum. Brief exposures of resting cells to OA did not affect the rate of protein synthesis. OA pulses in the late pre-replicative period had no effect on the entry of serum-stimulated cells into the S phase. Cell fusion experiments with resting (serum-deprived) and proliferating (serum-stimulated) NIH 3T3 cells, using radioautography with a double-labelling technique, revealed that pre-incubation of resting cells with OA for 2 h before and after fusion abrogates their ability to suppress the onset of DNA synthesis in the nuclei of proliferating cells in heterodikaryons. The results indicate that protein phosphatases of type 1 and/or 2A may be involved in the growth-arrest machinery that provides for cellular quiescence.  相似文献   

6.
Serum-deprived (0.2%) resting NIH 3T3 mouse fibroblasts were fused with serum-stimulated (10%) proliferating cells to elucidate mechanisms of entering into S-period operating in the nuclei of the heterokaryons under the effect of cycloheximide--an inhibitor of protein synthesis. Using radioautography DNA synthesis was investigated in mono-, homo- and heterodikaryons. After short (0.5-3.0 h) depressing of protein synthesis, the nuclei of stimulated cells in heterokaryons were found to enter into S-period. Under these conditions no induction of DNA synthesis was found in the nuclei of resting cells in heterodikaryons. In other experiments, resting cells were under the effect of cycloheximide during 2-4 h before the fusion, that led to a great induction of DNA synthesis in the nuclei of these cells in heterodikaryons. The data obtained are consistent with the idea of fibroblast transition to the rest under the action of labile proteins-repressors.  相似文献   

7.
NIH 3T3 mouse fibroblasts arrested in medium containing 0.5% serum were fused with stimulated cells taken at 2-h intervals after replacing the medium with one containing 10% serum, and DNA synthesis was studied in mono-, homo- and heterokaryons using radioautography with double-labelling technique. The presence of a resting nucleus in a common cytoplasm with a stimulated nucleus from the prereplicative period has an inhibitory effect on the entry of the stimulated nucleus into the S period in medium containing either 0.5 or 10% serum, but ongoing DNA synthesis continues. After a 24-h stay in a common cytoplasm with resting nuclei the stimulated nuclei return into the state of rest. When resting cells are stimulated by 10% serum, their inhibitory effect on stimulated nuclei in heterokaryons still persists, at least for 2 h following stimulation. Preincubation of resting cells with cycloheximide for 4 h abolishes their ability to suppress DNA synthesis in stimulated nuclei.The data suggest that resting cells produce an endogenous inhibitor of cell proliferation, whose formation depends upon the synthesis of protein. When stimulated, the cells can proliferate only after decreasing the level of this inhibitor. The results obtained are consistent with the idea of a negative control of cell proliferation.  相似文献   

8.
Transformation of NIH 3T3 cells, induced by v-myc oncogene, activates a proliferative potential of the cells cultivated in the serum-free medium, and reduces the ratio of 3H-Tdr incorporation into the cells grown in the presence of 10% fetal serum in comparison to those grown in the serum-free medium. The v-myc transformed cells (NIH 3T3-v-myc) as well as the untransformed ones are very responsive to insulin. On the other hand, the epidermal growth factor, able to stimulate proliferation of NIH 3T3 cells, exert no effects on the NIH 3T3-v-myc cells. The NIH 3T3-v-myc cells cultivated in the medium, containing 2.5% human plasma enriched with thrombocytes, have the same proliferative characteristics as cells grown in the thrombocyte-free plasma. It is concluded that transformation of NIH 3T3 cells induced by v-myc oncogene may reduce a requirement for thrombocyte-released growth factors and EGF but not for insulin.  相似文献   

9.
Mouse fibroblasts NIH 3T3 were transfected with the plasmid pBPV (142-6) containing full genome of bovine papilloma virus 1, and focuses of morphological transformation were selected 2-3 weeks later. DNA molecules, containing BPV-1 sequences, were isolated from extrachromosomal fraction of transformed clones suggesting stable autonomous replication of BPV in 3T3 NIH cells. In some rescued plasmids deletions spanning E6, 7 genes of BPV were found. It is suggested that these genes are not essential for morphological transformation and autonomous replication in 3T3 NIH cells. BPV-transformed clones are able to grow in the medium containing low concentration (0.5%) of serum.  相似文献   

10.
11.
The kinetics of repair of the ionizing radiation-induced DNA single- and double-strand breaks in the normal NIH 3T3 mouse cells and in those transformed with virus oncogenes v-myc has been investigated. The incubation of non-transformed cells for 18 hours in serum-free medium results in significant decrease in the rate of the single-strand DNA breaks repair during the first minutes of post-irradiation incubation. This effect is absent in transformed cells. The DNA double-strand breaks repair is more efficient in transformed NIH 3T3 cells as compared to that in the non-transformed ones both after their incubation in the medium with 10% fetal bovine serum or without serum. However, more significant differences in the rate of elimination of these DNA lesions was found in the serum-free medium. Hence, the presence of v-myc sequences in the transformed cells prevented from a decrease in the efficiency of DNA repair due to incubation of cell culture in serum-free medium. These results agree with the assumption that c-myc gene product may be a mediator in regulation of DNA repair by the epidermal growth factor. These data also show that the c-myc gene expression in an important condition providing a high efficiency of the constitutive DNA repair process.  相似文献   

12.
The objective of this study was to establish whether human recombinant tumor necrosis factor (TNF) can significantly stimulate the proliferation of some tumor cells. Treatment with TNF had little or no effect on the growth of human tumor cells and murine NIH/3T3 cells cultured in medium with high serum concentration. Two tumor lines, SK-MEL-109 melanoma and HOS osteosarcoma cells, were adapted to grow in medium supplemented with 0.5% serum. The growth of these SK-MEL-109 cells was inhibited by TNF, but that of the HOS cells was greatly stimulated by TNF in a dose-dependent way. Treatment with 10 ng/ml of TNF resulted in a two-fold increase in the rate of cell division. This effect of TNF was also shown by measuring DNA and protein synthesis. The continuous presence of TNF was not required for its mitogenic activity on HOS cells cultured with 0.5% serum, since treatment for only one day with TNF resulted in prolonged growth stimulation. The failure of TNF to promote division of cells cultured in medium with 10% serum may possibly be explained by the presence of saturating amounts of growth factors in serum. Interferons abolished the mitogenic activity of TNF on HOS cells. Furthermore, TNF did not show synergism with insulin or epidermal growth factor in stimulating growth of these cells. The level of c-myc mRNA was increased five-fold after 30 minutes of treatment with TNF. This shows that TNF is a growth factor for HOS cells and that it induces accumulation of c-myc mRNA.  相似文献   

13.
The biochemical properties of the metformin transport system were studied in NIH 3T3 cells. 14C-metformin uptake appeared to be a sodium dependent process. Iso-osmotical replacement of Na+ by choline chloride in the assay medium resulted in a decrease of metformin uptake. Amiloride (200 microM) inhibited the metformin transport by 35% in these cells. Gramicidin, a channel ionophore, was the most effective in inhibiting the metformin transport as compared to valinomycin, a mobile ion carrier, and Ca2+ ionophore (A 23187). Loading of cells with asparagine, ornithine, or polylysine did not influence the uptake process. However, the addition of lysine or arginine significantly stimulated the metformin uptake by NIH 3T3 cells. Similarly, the addition of metformin stimulated the arginine uptake by these cells, suggesting that metformin shares the y+ transport system. Metformin inhibited competitively the uptake of 14C-spermidine, a molecule of the polyamine family, by NIH 3T3 cells, whereas the latter failed to influence the uptake of the former significantly by these cells. Incubation of NIH 3T3 cells in the presence of difluoromethyl-ornithine (a suicidal inhibitor of polyamine biosynthesis) stimulated the spermidine, but not the metformin, uptake by these cells. Interestingly, a prolonged incubation of these cells in the presence of metformin failed to down-regulate the spermidine transport process. The spermidine- and methylglyoxal-bis(guanylhydrazone), MGBG-transport deficient (3T3MG) cells which do not accumulate exogeneous spermidine or MGBG, took up 14C-metformin. However, 14C-metformin uptake by 3T3MG cells was lower than that by normal NIH 3T3 cells.  相似文献   

14.
Addition of 5 to 250 micromolar adenosine to the culture medium resulted in a 30–80% inhibition of the rate of uptake of 2-deoxyglucose or 3–0-methylglucose by sparse or confluent 3T3 cells within three hours. The inhibition of deoxyglucose uptake could be reversed partially by changing the cells to medium without adenosine for two hours and could be prevented completely by the addition of persantin, an inhibitor of nucleoside uptake. The adenosine effect is not due to inhibition of pyrimidine synthesis, since it is not prevented by uridine. It is not seen in 3T6 cells lacking adenosine kinase. The inhibition could be observed on confluent cells whose deoxyglucose uptake was stimulated by insulin, epidermal growth factor (EGF), calf serum or calcium phosphate. Although the percentage stimulation over control by these factors varied, the percentage inhibition by addition of adenosine of the stimulated rates, as well as the unstimulated rate, was relatively constant. EGF, insulin and calcium phosphate caused little or no stimulation of deoxyglucose uptake by sparse cells, whether adenosine treated or untreated. The results suggest that adenosine acts intracellularly after phosphorylation to regulate sugar uptake through a mechanism which is independent of the regulation by hormones and cell density.  相似文献   

15.
The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.  相似文献   

16.
HARRY KUBIN 《Cell research》1990,1(2):198-206
NIH 3T3 cells, a mouse fibroblast cell line used as routine target cells for transfection experiments, undergo spontaneous transformation in our experiments after they form a confluent sheet in medium containing fetal bovine serum (FBS) or lower coneentration of calf serum (CS). The transformation takes the form of foci of multiplying cells among the surrounding cells which have stopped cell division. However, no focus of transformed cells could be seen in medium containing high concentration (10%) of CS. Further experiments indicated that the frequency of transformation is highly dependent on the concentration of serum and the transformation in CS is changeable when the cells are passaged in FBS. 3~H-thymidine autoradiography has been proved to be a sensitive measurement indicator for focus formation. Our results suggest that the high frequency of transformation and its dependence on confluency as well as on medium composition are characteristics of cell differentiation rather than mutation. The role of the NIH 3T3 cell line as a cancer-initiated cell population and its accelerated transformation by ras oncogene might be considered as a form of tumor promotion is discussed.  相似文献   

17.
Summary This laboratory recently reported that normal human mesothelial cells require epidermal growth factor (EGF) and hydrocortisone (HC), in addition to fetal calf serum and a complex defined medium component, in order to grow optimally in surface culture (9). We report here that this normal cell type also forms large colonies at high efficiency in semi-solid medium, but exhihits more stringent serum and EGF requirements for anchorage-independent than for surface growth. Mesothelial cells are unable to divide at all in semi-solid medium with added EGF or with less than 2% serum, whereas they grow slowly but progressively in surface culture under such conditions. In semi-solid medium containing 20% serum and HC, mesothelial cells are stimulated to divide by the addition of as little as 30 pg/ml purified EGF. Human urine or male mouse plasma could substitute for purified EGF, yielding growth commensurate with the levels of EGF in these biological fluids previously measured by others using radioreceptor and radioimmune assays. Thus growth of mesothelial cells in semi-solid medium can serve as a highly sensitive assay of EGF biological activity which is unaffected by the presence of serum proteins. In addition, our results demonstrate that fetal calf serum does not provide mitogenic levels of EGF to cultured cells, raising the question of the identity of plasma and serum mitogens. This work was supported by NIH grants RO1 AG02048 and RO1 CA26656 to James G. Rheinwald and by NIH postdoctoral fellowship F32 AG05303 to Paul J. La Rocca.  相似文献   

18.
Balbc3T3 cells were grown near confluency in media supplemented with 10% fetal calf serum and than exposed for 24 hours to media containing different phosphatidylcholines bound to delipidated fetal calf serum. Compared to cells grown in regular media, 3T3 cells exposed to media containing dioleoyl-phosphatidylcholine dramatically increased their agglutinability by Concanavalin A. Exposure to several other phosphatidylcholines had no effect.  相似文献   

19.
The role of ras oncogenes in cellular signalling pathways involving phospholipid breakdown was studied in untransfected and proto-H-ras and mutated H-, K- and N-ras transfected NIH/3T3 cells. When the cells were grown at low cell densities, all of the ras transfected cells had 2-4 fold higher diacylglycerol (DAG) levels compared to growing NIH/3T3 cells. At high cell densities, DAG levels decreased in the former and increased in contact inhibited NIH/3T3 cells. In this regard, only cells transformed by mutated cellular and viral H-ras oncogenes (but not by the H-ras proto-oncogene) had elevated DAG levels compared to contact inhibited NIH/3T3 cells. The basal levels of inositol phosphates in ras transfected cells were not significantly different from NIH/3T3 cells and did not vary with cell density. Thus, the elevated DAG levels are not a consequence of increased phosphoinositide hydrolysis. The latter was stimulated by serum and bombesin only in normal and proto-H-ras transfected cells. In contrast, stimulation by bradykinin was observed only in cells transformed by mutated cellular ras oncogenes. Furthermore, aluminum fluoride stimulated phosphoinositide breakdown in the latter cells indicating that there was no uncoupling of the G protein from phospholipase C. Treatment of ras transfected cells with dibutyryl cyclic AMP (DB-cAMP), which causes an inhibition of growth and a reversal of the transformed morphology, did not alter the basal levels of inositol phosphates, DB-cAMP, however, did lower DAG levels in some of the transformed cell lines, but elevated DAG levels in low density NIH/3T3 cells. These findings indicate that the ras gene product p21 is not involved in phosphoinositide hydrolysis and that DAG levels do not correlate with cell growth in either normal or ras transfected NIH/3T3 cells. Thus, p21 appears to alter cell growth through mechanism(s) independent of lipid signalling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号