首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are some mammalian alleles that display the unusual characteristic of variable expressivity in the absence of genetic heterogeneity. It has recently become evident that this is because the activity of these alleles is dependent on their epigenetic state. Interestingly, the epigenetic state is somewhat labile, resulting in phenotypic mosaicism between cells (variegation) and also between individuals (variable expressivity). The establishment of the epigenetic state occurs during early embryogenesis and is a probabilistic event that is influenced by whether the allele is carried on the paternal or maternal alleles. In addition, the epigenetic state determines whether these alleles are dominant. We propose that mammalian alleles with such characteristics should be termed metastable epialleles to distinguish them from traditional alleles. At this stage, it is unclear how common these alleles are, but an appreciation of their existence will aid in their identification.  相似文献   

2.
3.
Tumor cells display phenotypic plasticity and heterogeneity due to genetic and epigenetic variations which limit the predictability of therapeutic interventions.Chromatin modifications can arise stochastically but can also be a consequence of environmental influences such as the microenvironment of cancer cells.A better understanding of the impact and dynamics of epigenetic modulation at defined chromosomal sites is required to get access to the underlying mechanisms.We investigated the epigenetic modulations leading to cell-to-cell heterogeneity in a tumor cell line model.To this end,we analyzed expression variance in 80 genetically uniform cell populations having a single-copy reporter randomly integrated in the genome.Single-cell analysis showed high intraclonal heterogeneity.Epigenetic characterization revealed that expression heterogeneity was accompanied by differential histone marks whereas contribution of DNA methylation could be excluded.Strikingly,some clones revealed a highly dynamic,stochastically altered chromatin state of the transgene cassette which was accompanied with a metastable expression pattern.In contrast,other clones represented a robust chromatin state of the transgene cassette with a stable expression pattern.Together,these results elucidate locus-specific epigenetic modulation in gene expression that contributes to phenotypic heterogeneity of cells and might account for cellular plasticity.  相似文献   

4.
Although most mammalian genes are expressed from both alleles, there is a small group of special genes which are imprinted so that only one of the parental alleles is actually expressed in target cells. This epigenetic process involves regulation at a number of different stages of development and is very complex. In principle, imprinted gene regions must be marked in cis in the gametes using epigenetic features capable of being maintained through cell division and able to direct multigenic monoallelic expression in differentiated cells of the mature organism. The difference between alleles must be erased during early gametogenesis to allow the imprint to be reset in the mature gametes. In this review we will summarize what is currently known about the molecular mechanisms which mediate these steps.  相似文献   

5.
Variability among individuals in the severity of fragile X syndrome (FXS) is influenced by epigenetic methylation mosaicism, which may also be common in other complex disorders. The epigenetic signal of dense promoter DNA methylation is usually associated with gene silencing, as was initially reported for FMR1 alleles in individuals with FXS. A paradox arose when significant levels of FMR1 mRNA were reported for some males with FXS who had been reported to have predominately methylated alleles. We have used hairpin-bisufite PCR, validated with molecular batch-stamps and barcodes, to collect and assess double-stranded DNA methylation patterns from these previously studied males. These patterns enable us to distinguish among three possible forms of methylation mosaicism, any one of which could explain FMR1 expression in these males. Our data indicate that cryptic inter-cell mosaicism in DNA methylation can account for the presence of FMR1 mRNA in some individuals with FXS.  相似文献   

6.
Much of what we know about the role of epigenetics in the determination of phenotype has come from studies of inbred mice. Some unusual expression patterns arising from endogenous and transgenic murine alleles, such as the Agouti coat color alleles, have allowed the study of variegation, variable expressivity, transgenerational epigenetic inheritance, parent-of-origin effects, and position effects. These phenomena have taught us much about gene silencing and the probabilistic nature of epigenetic processes. Based on some of these alleles, large-scale mutagenesis screens have broadened our knowledge of epigenetic control by identifying and characterizing novel genes involved in these processes.  相似文献   

7.
8.
The epigenome plays a vital role in helping to maintain and regulate cell functions in all organisms. Alleles with differing epigenetic marks in the same nucleus do not function in isolation but can interact in trans to modify the epigenetic state of one or both alleles. This is particularly evident when two divergent epigenomes come together in a hybrid resulting in thousands of alterations to the methylome. These changes mainly involve the methylation patterns at one allele being changed to resemble the methylation patterns of the other allele, in processes we have termed trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). These processes are primarily modulated by siRNAs and the RNA directed DNA methylation pathway. Drawing from other examples of trans-allelic interactions, we describe the process of TCM and TCdM and the effect such changes can have on genome activity. Trans-allelic epigenetic interactions may be a common occurrence in many biological systems.  相似文献   

9.
《Epigenetics》2013,8(8):800-805
The epigenome plays a vital role in helping to maintain and regulate cell functions in all organisms. Alleles with differing epigenetic marks in the same nucleus do not function in isolation but can interact in trans to modify the epigenetic state of one or both alleles. This is particularly evident when two divergent epigenomes come together in a hybrid resulting in thousands of alterations to the methylome. These changes mainly involve the methylation patterns at one allele being changed to resemble the methylation patterns of the other allele, in processes we have termed trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). These processes are primarily modulated by siRNAs and the RNA directed DNA methylation pathway. Drawing from other examples of trans-allelic interactions, we describe the process of TCM and TCdM and the effect such changes can have on genome activity. Trans-allelic epigenetic interactions may be a common occurrence in many biological systems.  相似文献   

10.
11.
12.
There is increasing evidence for epigenetically mediated transgenerational inheritance across taxa. However, the evolutionary implications of such alternative mechanisms of inheritance remain unclear. Herein, we show that epigenetic mechanisms can serve two fundamentally different functions in transgenerational inheritance: (i) selection-based effects, which carry adaptive information in virtue of selection over many generations of reliable transmission; and (ii) detection-based effects, which are a transgenerational form of adaptive phenotypic plasticity. The two functions interact differently with a third form of epigenetic information transmission, namely information about cell state transmitted for somatic cell heredity in multicellular organisms. Selection-based epigenetic information is more likely to conflict with somatic cell inheritance than is detection-based epigenetic information. Consequently, the evolutionary implications of epigenetic mechanisms are different for unicellular and multicellular organisms, which underscores the conceptual and empirical importance of distinguishing between these two different forms of transgenerational epigenetic effect.  相似文献   

13.
Inheritance of epigenetic chromatin silencing   总被引:1,自引:0,他引:1  
Maintenance of alternative chromatin states through cell divisions pose some fundamental constraints on the dynamics of histone modifications. In this paper, we study the systems biology of epigenetic inheritance by defining and analyzing general classes of mathematical models. We discuss how the number of modification states involved plays an essential role in the stability of epigenetic states. In addition, DNA duplication and the consequent dilution of marked histones act as a large perturbation for a stable state of histone modifications. The requirement that this large perturbation falls into the basin of attraction of the original state sometimes leads to additional constraints on effective models. Two such models, inspired by two different biological systems, are compared in their fulfilling the requirements of multistability and of recovery after DNA duplication. We conclude that in the presence of multiple histone modifications that characterize alternative epigenetic stable states, these requirements are more easily fulfilled.  相似文献   

14.
15.
Genomic imprinting is an epigenetic process result in silencing of one of the two alleles (maternal or paternal) based on the parent of origin. Dysregulation of imprinted genes results in detectable developmental and differential abnormalities. Epigenetics erasure is required for resetting the cell identity to a ground state during the production of induced pluripotent stem (iPS) cells from somatic cells. There are some contradictory reports regarding the status of the imprinting marks in the genome of iPS cells. Additionally, many studies highlighted the existence of subtle differences in the imprinting loci between different types of iPS cells and embryonic stem (ES) cells. These observations could ultimately undermine the use of patient-derived iPS cells for regenerative medicine.  相似文献   

16.
17.
18.
19.
A review of the data on the mechanisms and effects of genomic imprinting, an epigenetic phenomenon regulating the development in placentate mammals, is presented. In contrast to the majority of gene loci with biallelic expression, the expression of imprinted loci is monoallelic. In humans and mice, more than 300 imprinted loci have been identified, in which maternal or paternal alleles may either be expressed or be found in a repressed state during ontogeny. Imprinting is established during gametogenesis, and the repression of an allele of the imprinted locus is determined by methylation of the key regulatory element of this allele. Both the maternal and paternal chromosome sets are required for normal development in mammals. This is why parthenogenesis and androgenesis in these animals are impossible in nature. As a result of differential gene expression of many imprinted loci, the balance of gene activity is established, which is necessary for normal proliferation and differentiation of various cell clones in embryogenesis. Many human developmental abnormalities and syndromes are determined by defective genomic imprinting. In particular, the loss of imprints, which is followed by the occurrence of biallelic expression of some imprinted loci, may cause malignant tumors.  相似文献   

20.
During development cells transit through different states as they pass from stem cell to terminally differentiated cell. There is evidence that the transition from one state to another can be accompanied by changes in epigenetic state of genes, which is embodied in chromatin state. Here we give an overview of the changes in chromatin that accompany the regulation of expression and review the evidence for the involvement of such changes during epidermal root development and discuss the roles that these changes play in the differentiation of the cell types involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号