首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of dexamethasone on the synthesis of acute phase proteins has been studied in primary cultures of rat hepatocytes. In the absence of dexamethasone no detectable amounts of alpha 2-macroglobulin were synthesized by hepatocytes cultured for 1 day. alpha 2-Macroglobulin synthesis was induced by dexamethasone concentrations of 10(-8) M or higher with a maximum at a concentration of 10(-7) M. alpha 1-Acid glycoprotein was synthesized in the absence of dexamethasone; however, its synthesis was also greatly stimulated by dexamethasone concentrations of 10(-8)-10(-6) M. Synthesis of alpha 1-proteinase inhibitor was stimulated only 1.4-fold at a dexamethasone concentration of 10(-7) M. The kinetics of induction of alpha 2-macroglobulin and alpha 1-acid glycoprotein were studied at a dexamethasone concentration of 10(-7) M. After an initial lag phase of 3 h the synthesis of both proteins showed a steady increase during 2 days. Synthesis of albumin remained unchanged under these experimental conditions. Unlike alpha 2-macroglobulin and alpha 1-acid glycoprotein tyrosine aminotransferase activity increased already during the first 3 h of induction by dexamethasone with a maximum at 12 h followed by a slight decrease.  相似文献   

2.
The addition of 10(-11) M insulin to a cell-free system from rat liver promotes the release of messengerlike RNA from isolated prelabeled nuclei. The stimulation was similar whether the nuclei were preincubated with insulin, or if insulin was added directly to the cell-free system with or without a protease inhibitor. Dot blot hybridization using cloned cDNA for alpha 2u-globulin mRNA showed that this was one of the messages whose release was enhanced by insulin. Nuclei isolated from rats treated with either of the antidiabetics tolbutamide or tolazamide showed no increase in RNA release in the presence of insulin over the concentration range 10(-5) - 10(-14) M. Furthermore, these nuclei did not release detectable levels of alpha 2u-globulin mRNA.  相似文献   

3.
4.
Expression of the endogenous human GH (hGH) gene in response to glucocorticoids, thyroid hormone, and insulin was studied in cultures of dispersed GH-secreting human pituitary adenomas. Results were compared to those obtained when the hGH gene was transfected into rat pituitary tumor cells (GC). In the human pituitary cells the glucocorticoid dexamethasone [(Dex) 10(-6) M] increased the release of GH and the levels of GH mRNA by 2 to 4-fold (P less than 0.05). T3 (10(-8) M) had no effect on GH mRNA but increased hGH release by 2- to 6-fold (P less than 0.01). Insulin (5 x 10(-9) M) alone had no significant effect on either hGH mRNA or protein, but blunted the effect of Dex. Among 11 of 18 GC cell clones transfected with the hGH gene with detectable hGH mRNA expression, Dex increased hGH mRNA levels in seven and T3 treatment reduced hGH mRNA levels in eight. Conversely, rat GH mRNA levels from the endogenous rat gene were increased by either Dex or T3 in all 18 clones. Insulin alone or in combination with T3 or Dex was found to increase hGH mRNA levels in some cell lines and to decrease hGH mRNA levels in others; these effects were correlated strongly (r = 0.88; P less than 0.001) with the influence of insulin on the endogenous rat GH gene, implying that individual cellular differences can simultaneously affect the insulin responsiveness of both genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Stable hybridomas generated by fusion of spleen cells from hyperimmunized mice and mouse myeloma cells were cloned to prepare monoclonal antibodies to alpha 2u-globulin, an androgen-dependent urinary protein of hepatic origin. One of these monoclonal antibodies was used as a probe for immunocytofluorometric analysis of alpha 2u-globulin producing hepatocytes during androgenic induction and aging through fluorescence-activated cell sorting (FACS). FACS patterns of hepatocytes from mature male rats that produce high levels of alpha 2u-globulin showed tow distinct peaks, arbitrarily designated as peak I (weakly fluorescent) and peak II (brightly fluorescent). In the mature male rat, peak II represented about 40% of the total hepatocytes, and the fluorescence intensity of this subpopulation decreased in direct correspondence with the gradual decline of alpha 2u-globulin synthesis during aging. Similarly the androgenic induction of this protein in ovariectomized female rats was associated with an increase in the fluorescence intensity of the hepatocyte subpopulation under peak II rather than an increase in the relative number of these cells. From these results we conclude that the androgen-dependent synthesis of alpha 2u-globulin and its alteration during aging are confined to a specific subpopulation of hepatocytes within the liver.  相似文献   

6.
7.
1. The possible mechanism of the oestrogenic inhibition of the androgen-dependent synthesis of alpha2u-globulin in rat liver was explored by a correlative study of the amounts of alpha2u-globulin, its corresponding mRNA and circulating testosterone in oestrogen-treated male rats. 2. Daily treatments of mature male rats with oestradiol-17beta (10 microgram/100g body wt.) decreased and ultimately stopped the hepatic synthesis of alpha2u-globulin as determined by both hepatic and urinary concentrations of the protein. The oestrogen-mediated decrease in the hepatic synthesis of alpha2u-globulin was correlated with a decrease in the mRNA for this protein. 3. Withdrawal of oestrogen resulted in the recovery of alpha2u-globulin synthesis and an increase in mRNA for alpha2u-globulin. 4. At higher doses of oestradiol-17beta (50 microgram/100g body wt.), synthesis of alpha2u-globulin was totally suppressed. In addition, this treatment resulted in an extended period of androgen-insensitivity during which treatment with androgens induced synthesis of neither alpha2u-globulin nor its corresponding mtrna. 5. it is concluded that the oestrogenic inhibition of alpha2u-globulin synthesis is mediated by an oestrogen-dependent decrease in the hepatic content of translatable mRNA for alpha2u-globulin.  相似文献   

8.
In order to determine whether the human insulin receptor ectodomain can be expressed as a functional protein, the coding regions for the transmembrane and cytoplasmic domain of a full-length human insulin receptor cDNA were deleted by site-directed mutagenesis, and the resultant construct was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH3T3 cells, a cell line secreting an insulin binding protein was isolated. The insulin binding alpha subunit had an Mr of 138,000 and a beta subunit of Mr 48,000 (compared to 147,000 and 105,000 for the full-length human insulin receptor expressed in NIH3T3 cells). This difference in size of the alpha subunit was due to a difference in glycosylation as N-glycanase digestion reduced the apparent size of the alpha subunits of secreted and normal membrane-bound receptors to identical values. The secreted receptor formed disulfide-linked heterotetrameric structures with an Mr of 280,000. It was synthesized as an Mr 160,000 precursor which was cleaved into mature subunits with a t1/2 of 3 h. Increasing expression of the cDNA by induction with sodium butyrate lead to the appearance of an Mr 180,000 protein in the medium as well as the mature alpha and beta subunits. A Scatchard plot of insulin binding to the secreted receptor was curvilinear with a Kd of 7 X 10(-10) M for the high affinity sites and 10(-7) M for the low affinity site (compared to Kd values of 1.1 X 10(-9) M and 10(-7) M, respectively, for human insulin receptors expressed in these cells.  相似文献   

9.
10.
alpha2u-Globulin is a male rat liver protein of Mr = 20,000 which is synthesized in the liver of adult male rats, secreted into the serum, and excreted in the urine. Its function is unknown. The hepatic synthesis of this protein is under complex hormonal control. We had previously shown that castration of male rats diminishes hepatic alpha2u-globulin synthesis and the level of its mRNA, and that administration of androgen to these castrated animals results in the reinduction of the synthesis of this protein and the level of its mRNA. We now report that alpha2u-globulin synthesis and the level of its mRNA can be fully reinduced in castrated males by administration of glucocorticoid alone. This induction is much more rapid than the androgenic induction and is inhibited by the glucocorticoid antagonist progesterone. Administration of glucocorticoid to intact male animals does not induce alpha2u-globulin synthesis above normal levels; however, if alpha2u-globulin synthesis has been depressed in intact male rats by pretreatment with estrogen or cyproterone acetate, the level of this protein can be reinduced by administration of glucocorticoids. The implications for the control of alpha2u-globulin gene expression are discussed.  相似文献   

11.
12.
13.
1. Gal beta 1-4GlcNAc alpha 2-6 sialyltransferase was assayed in FAZA hepatoma cells and the cell culture medium following growth of cells in presence of dexamethasone and phorbol ester. 2. There was about a seven-fold increase in sialyltransferase activities in cells and medium in presence of dexamethasone with the maximum effect occurring at 10(-6)-10(-7) M dexamethasone. 3. The presence of 10(-6) M phorbol ester in the culture medium increased sialyltransferase activities in cells and medium by ca 40% over the values found with dexamethasone alone. 4. The use of the FAZA hepatoma cell line for studies on sialyltransferase is compared with the primary hepatocyte system reported on earlier (Woloski et al., 1986).  相似文献   

14.
The effect of cell density on the regulation of growth hormone (GH) receptors was studied by measuring specific binding of [125I]hGH to primary cultured hepatocytes with or without dexamethasone, which induces GH receptors. In cell cultures without dexamethasone, the cell density did not affect the level of binding of labeled GH appreciably. On the other hand, in the presence of dexamethasone, which induced an increase in the level of GH receptors on the cells, GH-binding by cultured cells at low cell density (3.3 x 10(4) cells/cm2) was about one-third of that of cells at high cell density (10(5) cells/cm2). Scatchard plot analysis showed that the cell-density dependent change in induction of GH binding, by dexamethasone was due to change in the number of binding sites without significant change in their affinity. The binding capacity of glucocorticoid receptors, measured as specific binding of [3H]dexamethasone to the hepatocytes, was not significantly affected by cell density. These results suggest that cell density modulates GH receptor induction by dexamethasone via events after glucocorticoid receptor binding.  相似文献   

15.
A mutual antagonism exists between interleukin-1s (IL-1s) as pro-inflammatory and glucocorticoids as anti-inflammatory mediators. This report examines the effects of IL-1 on the induction by dexamethasone of alkaline phosphatase in LEII murine endothelial cells. Dexamethasone increases the specific activity of alkaline phosphatase in a time- and dose-dependent fashion (maximum 14-fold induction at 10(-6) M, IC50 = 10(-8) M), and this induction can be completely inhibited by simultaneous incubation with picomolar concentrations of recombinant human IL-1 alpha or IL-1 beta. This IL-1-mediated antagonism of dexamethasone activity is not due to a down-regulation of glucocorticoid receptors in the cell line used, because the number of receptors and their affinity for dexamethasone is unchanged in IL-1-treated cells. However, induction of alkaline phosphatase by dexamethasone in LEII cells is receptor-mediated, since it can also be inhibited by glucocorticoid-receptor antagonists.  相似文献   

16.
The induction of alpha 1-acid glycoprotein mRNA by recombinant murine interleukin-1, recombinant human interleukin-1 alpha, and recombinant human interleukin-1 beta has been studied in the rat hepatoma cell line Fao. Whereas the stimulatory capacities of recombinant human interleukin-1 alpha and recombinant murine interleukin-1 were almost identical, the concentrations of recombinant human interleukin-1 beta needed for half-maximal induction of alpha 1-acid glycoprotein mRNA were lower by three orders of magnitude. A 60-fold increase in alpha 1-acid glycoprotein mRNA levels was observed 18 h after the addition of recombinant interleukin-1 beta. In parallel albumin mRNA levels decreased to about 30%. The alpha 1-acid glycoprotein mRNA induction was strictly dependent on the presence of dexamethasone. For a full stimulation dexamethasone concentrations of greater than 10(-7) M were needed, whereas concentrations of less than 10(-12) M were ineffective. The increase in alpha 1-acid glycoprotein mRNA after recombinant human interleukin-1 beta was followed by a 36-fold stimulation in alpha 1-acid glycoprotein synthesis and secretion. When protein synthesis was blocked by either cycloheximide, puromycin, or emetine, the induction of alpha 1-acid glycoprotein mRNA by recombinant human interleukin-1 beta was impaired suggesting the involvement of a short-lived protein in the induction of alpha 1-acid glycoprotein mRNA.  相似文献   

17.
18.
A preadipocyte cell population isolated from the inguinal tissue of 3-day-old rats converts at confluence into mature adipocytes when cultured with insulin (10(-9) M). Insulin is necessary only from Day 4 postplating. If the addition of insulin is further delayed, the proportion of cells which will undergo adipose conversion decreases. A loss of the differentiation competence is also observed when the cells are allowed to proliferate (seeding at a low density in a serum containing medium). A preexposure of the primary cells to dexamethasone during the insulin-insensitive period (Days 0-4) accelerates the subsequent "insulin-dependent" adipose conversion. In order to produce its effect, dexamethasone needs only to be present for 4 h on Day 2 postplating. The effect of dexamethasone is probably due neither to inhibition of cell proliferation nor to induction of the cell content of insulin receptors. The evolution of G3PDH enzyme activity as well as of G3PDH protein and mRNA was used as an indicator of the differentiation process. The enzyme accumulates to a low extent during culture in the absence of insulin. When insulin is present, the enzyme level is dramatically increased (maximum on Day 11). Dexamethasone pretreatment (Days 0-4, or 4 h on Day 2) accelerated the G3PDH enzyme activity increase as well as protein and mRNA accumulation. This was also true in cells maintained in insulin-free medium; however, in this case, the increase in the enzyme activity was limited to the first 8 days of culture and full differentiation did not take place. We conclude that: (1) the rat preadipocytes are committed to differentiate, requiring insulin as a sufficient physiological stimulus; (2) the differentiation program is progressively lost after greater than 4 days of culture without insulin and more rapidly if the cells are allowed to undergo divisions; and (3) dexamethasone accelerates the insulin-dependent adipose conversion but alone does not ensure the complete differentiation process.  相似文献   

19.
Dexamethasone (3 X 10(-10) to 3 X 10(-6) M) induced foci of morphologically transformed cells in a small proportion of a mink cell line that contains the Moloney murine sarcoma viral genome (S+L-). The induction was glucocorticoid specific, since other steroids with glucocorticoid activity (prednisolone, cortisol, and aldosterone) induced foci with an efficiency that paralleled their glucocorticoid activity, and steroids lacking glucocorticoid activity (17B-estradiol, testosterone, and progesterone) failed to induce foci. Viral antigen, as measured by specific immunofluorescence, was localized to the foci. The induction of foci by dexamethasone (3 X 10(-7)) was accompanied by an approximately 10-fold increase in intracellular Moloney murine sarcoma virus-specific RNA and viral p30 antigen. Removal of dexamethasone was followed by the disappearance of foci and a decrease in viral RNA and p30. In this cell system, therefore, glucocorticoids can affect the intracellular levels of type C viral RNA and protein.  相似文献   

20.
The cell association and degradation of insulin and alpha 2-macroglobulin-trypsin complex were measured in rat adipocytes with or without various inhibitors in the attempt to clarify whether the two ligands were taken up by the same or by different pathways. Several inhibitors, and particularly those of membrane traffic, lysosomal function and transglutaminase activity, affected the two ligands differently. Thus, chloroquine (100 microM) reduced both the uptake of alpha 2-macroglobulin X trypsin and its receptor-mediated degradation by about 70%. In contrast, the uptake of insulin was increased 2-3-times and the receptor-mediated degradation was only slightly reduced. Methylamine (10 mM) and ammonium chloride (10 mM) reduced degradation of alpha 2-macroglobulin X trypsin markedly without affecting that of insulin. Leupeptin (100 microM) increased uptake and reduced degradation of alpha 2-macroglobulin X trypsin without affecting insulin. Dansylcadaverine (500 microM) almost abolished uptake and degradation of alpha 2-macroglobulin X trypsin but had little effect on insulin. Moreover, uptake and degradation of alpha 2-macroglobulin X trypsin was much more sensitive than insulin to the action of metabolic inhibitors such as dinitrophenol and cyanide. The results show that the two ligands are taken up by functionally different systems. In addition, they support the hypothesis that lysosomes play a relatively minor role in the receptor-mediated degradation of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号