首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The influence of light quality on competence and determination for organogenesis was investigated using lettuce cotyledon explants. Lettuce seedlings from four genotypes were germinated in the dark or under white, red, or blue light. Cotyledon explants were excised and cultured on a shoot-inducing medium for 28 d under white light. Germination in the dark reduced shoot numbers, suggesting that light improves the competence of explants for organogenesis. When explants from seedlings germinated under white light were cultured under different light qualities, blue was found to inhibit shoot production while red light either promoted production or had no effect on shoot number compared to controls. Treatment with blue plus red light failed to overcome the inhibition by blue light. To ascertain the temporal responses of explants to light quality, they were cultured under red or blue light prior to transfer to the alternate treatment. Exposure to blue light within 7 d of excision permanently reduced explant competence for organogenesis. Exposure after this time had a minimal effect. These results suggest that both phytochrome and cryptochrome can regulate shoot production from lettuce cotyledon explants and blue light can only inhibit organogenesis, in lettuce, during a relatively small developmental window.  相似文献   

2.
The aim of this study was to improve the direct somatic embryogenesis and initiate embryogenic callus formation in camphor tree (Cinnamomum camphora L.) on hormone-free medium. The influence of osmotic stress pretreatment of immature zygotic embryos (0.5 and 1.0 M solution of sucrose for 12, 24, 48, 72, 96, 120, and 144 h at 4 or 25°C) before cultured on hormone-free medium, on embryogenesis efficiency was assessed. The embryogenesis frequency was improved from 16.29 to 93.27%, while the average number of somatic embryos per explant increased from 3 to 12.57. Activated charcoal (AC), medium renewal, basal medium, light conditions and sucrose concentration in culture medium were also evaluated for their effect on somatic embryogenesis. AC addition and 10-day medium renewal did not increase embryogenesis efficiency significantly, and Murashige and Skoog (MS) medium proved to be more beneficial for somatic embryo formation than others. No differences were found between embryogenesis frequencies when cultured in darkness or under light, but culturing under light yielded more embryos. After the sucrose solution pretreatment, high level concentration of sucrose in induction medium was not needed for somatic embryogenesis, for it had a negative effect on somatic embryo formation when the concentration of sucrose was higher than 50 g l−1. The derived embryogenic lines were maintained via repetitive embryogenesis on hormone-free medium. Low ratio formation of embryogenic callus was observed on the surface of somatic embryos both on induction and proliferation medium. Plantlets derived from somatic embryos grew vigorously with normal appearance similar to germinated zygotic embryos.  相似文献   

3.
Summary Three auxin-type herbicides, namely 2.4-dichlorophenoxyacetic acid (2,4-D), (4-chlorophenoxy)acetic acid 2-(dimethylamino)ethyl ester (centrophenoxine), and quinolinecarboxylic acid (quinclorac) induced direct somatic embryogenesis in seed-derived zygotic embryo explants of sweet pepper (Capsicum annuum L.) when added to Murashige and Skoog medium with 200 mM sucrose. Optimum concentrations for embryogenesis induction were 0.40–0.45 mM and 1.15–1.30 μM for 2.4-D and centrophenoxine, respectively (in the presence of 5.0 gl−1 activated charcoal), or 40 μM for quinclorac (in medium without activated charcoal). Somatic embryos emerged from the epidermal and subepidermal tissues and developed on the surface of the explant. Centrophenoxine- or 2.4-D-mediated embryogenesis was accomplished from 95% of the explants in about 3 wk and, on average, six embryos were formed per explant. Induction efficieney was lower for quinelorac. Centrophenoxine-mediated embryognesis was possible in 10 pepper cultivars, the extent of the reponse-being genotype-dependent. embryos detached from the explant and transplanted onto a growth regulator-free medium germinated; however, the recovered regenerants were without a shoot, and some of them bore a single deformed cotyledon while others had no cotyledons. Regenerants lacking a shoot were generated irrespective of the auxin type applied and across all responsive genotypes investigated. Absence of a shoot, resulting from a failure in the establishment of a normal functioning apical shoot meristem, was the principal developmental disorder that precluded regeneration of normal plants via direct somatic embryogenesis. Since stem cells of the shoot meristem become established in globular and heart-stage embryos, we deduce that the absence of a shoot in germinating embryos could orginate from deviant differentiation at these early stages of embryogeny.  相似文献   

4.
Callogenesis, somatic embryogenesis, and regeneration were obtained from tissues of unfertilized ovaries of sweet orange (Citrus sinensis Osbeck.) cv. Tobias. The influence of two modified basal media, woody plant medium (WPM) and N6 medium, to induce callus formation from pistils was determined. Overall, high frequencies of callogenesis were observed when either medium was used. However, initial culture of explants in WPM medium followed by transfer of callus to N6 medium resulted in higher frequency of callus induction (of 2.30 callus per explant that were larger than 0.5 cm in size), and of subsequent development of embryogenic callus (10%). A total of 125 somatic embryos were obtained. After 6 months of culture, 72% of somatic embryos germinated into plantlets. These plantlets were subsequently micrografted in vitro, and then acclimatized. Ploidy of these plants were determined using flow cytometry and TRAPS molecular markers were used to confirm their maternal origin.  相似文献   

5.
The propagation of Givotia rottleriformis Griff. is difficult as a result of long seed dormancy associated with poor seed germination. The present study was undertaken to develop a protocol to overcome seed dormancy by culture of zygotic embryo axes and then develop an efficient method for micropropagation of Givotia. Best germination frequency (78.3%) was achieved from mature zygotic embryo axes isolated from acid-scarified fresh seeds when cultured on Murashige and Skoog (MS) medium (half-strength major salts) with 28.9 μM gibberellic acid (GA3). Efficient plant conversion was achieved by transfer of 10-d-old germinated embryos to MS medium (half-strength major salts) supplemented with 1.2 μM kinetin (KN) and 0.5 μM indole-3-butyric acid (IBA). However, acid scarification of 1-yr-old seeds decreased the germination frequency of zygotic embryo axes in comparison to those obtained from non-acid-scarified seeds which germinated (96.2%) and converted into plants (80.3%) on MS basal (half-strength major salts) medium. Multiple shoot bud induction was achieved by culture of shoot tips derived from in vitro germinated seedlings on MS medium with 0.5 μM thidiazuron for 4 wk, and the shoots elongated after transfer to a secondary medium with 1.2 μM KN. A maximum number of 7.8 shoots per explant with an average shoot length of 3.2 cm was achieved after two subcultures on this medium. The in vitro regenerated shoots rooted (41.5%) on half-strength MS medium with 0.5 μM IBA. The in vitro generated seedlings and micropropagated plants were established in soil with a survival frequency of 70% and 60%, respectively.  相似文献   

6.
Summary Four auxins (2,4-dichlorophenoxyacetic acid [2,4-D], indole-3-acetic acid [IAA], indole-3-butyric acid [IBA], and naphthaleneacetic acid [NAA]), and five cytokinins (N 6-[2-isopentenyl]-adenine [2iP], N 6-benzyladenine [BA], 6-furfurylaminopurine [kinetin], 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea [TDZ], and 6-[4-hydroxy-3-methylbut-2-enylamino]purine [zeatin]) were examined for their effects on direct embryo induction from leaf explants of Dendrobium cv. Chiengmai Pink cultured on 1/2 Murashige and Skoog (MS) medium. Whether in light or darkness, explants easily became necrotic and no embryos were obtained on growth regulator-free or auxin-containing media after 60 d of culture. By contrast, five cytokinins tested induced direct embryo formation from leaf explants, and explants cultured in light had a higher embryogenic response compared with those cultured in darkness. The best condition for direct embryo induction was at 18.16 μM TDZ cultured in light for 60 d, where 33% of explants formed a mean number of 33.6 embryos per explant. During subculture on growth regulator-free 1/2 MS medium, embryos gradually developed into plantlets. Secondary embryogenesis was occasionally found on sheath leaves of embryos. Regenerated plantlets were successfully transplanted and grown in a greenhouse environment.  相似文献   

7.
A simple and efficient protocol was developed for somatic embryogenesis from leaf and petiole explants of Campanula punctata Lam. var. rubriflora Makino. Somatic embryos (SE) were obtained with greater frequency from petiole explants than from leaf explants when cultured on Murashige and Skoog (MS) medium supplemented with 2.0 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg L−1 6-benzyladenine (BA). On this medium, a mean number of 19.5 and 31.2 SE were developed per leaf and petiole explants, respectively. Embryos were induced both light and dark conditions but culturing the explants 2 weeks in the dark followed by 3 weeks under light resulted in high frequency of embryo formation. Globular embryos germinated best on MS medium supplemented with 0.3% (w/v) activated charcoal (AC) and 1.0 mg L−1 GA3. The germinated plantlets grew further on MS medium containing 0.3% AC. Plantlets were successfully acclimatized in the greenhouse with 94% survival rate. This is the first report on induction of somatic embryogenesis in this genus and also has implications for genetic transformation, and mass clonal propagation.  相似文献   

8.
The aim of this research was to establish a long-term somatic embryogenic cultures that could be used for cryopreservation. For the induction of somatic embryogenesis, different levels of 2,4-D as well as the combination of 2,4-D and indole-3-acetyl-l-aspartic acid (IASP) were tested on cotyledons of zygotic embryos. The somatic embryogenic cultures were established and maintained up to 2 years through frequent subculturing on a medium containing 2,4D + IASP. Light, activated charcoal, and polyethylene glycol (PEG) were tested for the regeneration and maturation of somatic embryos, and the mature embryos were germinated in JADS medium. The combination of light and PEG provided the highest number of mature embryos. The somatic embryos obtained were smaller than zygotic embryos and lacked starch. There was an interaction between 2,4-D and IASP on the induction and regeneration of somatic embryo in Myrciaria aureana. The combination of light and PEG increased the number of mature embryos; however, charcoal was detrimental to the process.  相似文献   

9.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

10.
Arabidopsis seeds were germinated on sterile mineral agar supplemented with 1% glucose and cultured under continuous light regimes. With 4-hour incandescent plus 20-hour monochromatic illumination in the region from 400 to 485 nanometers there was effective floral induction at an intensity of 100 microwatts per square centimeter. Exclusion of far red wave lengths from the 4-hour incandescent period sharply reduced the effectiveness of subsequent monochromatic blue light in promoting floral induction. Delayed floral induction occurred under continuous incandescent light lacking far red and was attributable to the blue wave lengths. Continuous 485 nanometer (100 microwatts per square centimeter) exposure without any white light treatment during the postgermination growth period was ineffective in floral induction and meristem development. Light at 730 nanometers under the same conditions was partially effective, whereas energy between 500 and 700 nanometers was completely ineffective. When continuous monochromatic light at a 3-fold higher energy level was administered, all photomorphogenic responses were accomplished with 485 nanometer light, including germination and 100% floral induction without any white light treatment at any time during the experiment. Almost equal quantum effectiveness was calculated when equivalent quantum flux densities in the region from 710 to 740 nanometers or at 485 nanometers were used. It is postulated that floral induction in Arabidopsis may be the result of a continuous excitation of a stable form of far red-absorbing phytochrome localized in or on a membrane, and that excitation can be either by direct absorption of energy by far red-absorbing phytochrome or by transfer from an accessory pigment.  相似文献   

11.
Summary Somatic embryo (bipolar) or shoot (monopolar) morphogenesis in mesophyll cells of Euphorbia nivulia Buch.-Ham in vitro was dependent on the type of auxin supplementing Murashige and Skoog (MS) medium containing benzyladenine. Direct in vitro morphogenesis, i.e., organogenesis, and somatic embryogenesis were significantly influenced by seasonal growth of the donor plant, explant position (proximal, mid, and distal), and light. Explants collected in march/April were superior to July/August material. Proximal explants underwent morphogenesis more readily than mid- and tip-derived explants. Incubation in the light favored morphogenesis while darkness was inhibitory. Kinetin (Kn) was also inhibitory to morphogenesis. MS medium enriched with different levels of N6-benzyladenine (BA) alone, or in combination with α-naphthaleneacetic acid (NAA) or indole-3-acetic acid (IAA), induced adventitious shoots directly. Explants collected in March/April cultured on medium with 13.3 μM BA and 2.69 μM NAA developed the highest number of shoots, a mean of 15.2 shoots per proximal explant. Developed shoots rooted the best on half-strength MS medium with 2.46 μM indole-3-butyric acid, which developed a mean of 5.2 roots per shoot. Rooted healthy shoots could be transplanted to small pots, with an 80% survival rate. Addition of 2,4-dichlorophenoxyacetic acid (2.4-D) to BA-supplemented medium was obligatory to develop somatic embryos. MS medium containing 2.26 μM 2,4-D and 4.44 μM BA induced a mean of 44.8 somatic embryos per proximal explant. The embryos passed through distinct stages of embryogenesis, namely globular, heart, torpedo, and early cotyledonary. The embryos (88%) underwent maturation on half-strength MS medium with 2.89 μM gibberellic acid (GA3), and its subsequent transfer on half-strength MS basal medium in light conditions facilitated 80% conversion of embryos to plantlets. Direct shoots or embryos were originated from the mesophyll cells. Somatic embryo development was concurrent with the independent origin of vasculature in the bulbous basal portion. The survival rate of embryo-derived plants was 90%.  相似文献   

12.
Summary Black grama (Bouteloua eriopoda) is an important forage grass in southwestern USA rangelands. Plants were regenerated by somatic embryogenesis. Surface-disinfested seeds were germinated and the embryonic shoots were excised and cultured on Murashige and Skoog (MS) medium gelled with agar. Callus was induced from apical meristems. Calluses were cultured on MS solid medium with six concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) or Dicamba (6-dichloro-o-anisic acid) for 6 wk under light or dark conditions. Somatic embryo induction was greatest on 4.52 μM Dicamba, under light, after transferring to an auxin-free medium. Embryo development progressed from globular torpedo to mature embryos phenotypically identical to those naturally produced in seed. These germinated and grew into intact plants and were established in soil and grown to maturity. To our knowledge, this is the first report of somatic embryo induction and regeneration in black grama grass.  相似文献   

13.
Endoreduplication is a developmental process that is unique to plants and occurs in all plants. The present study aimed to assess endoreduplication in various explant tissues and regenerated somatic embryos of Doritaenopsis. We further investigated the effects of light quality on endoreduplication and somatic embryo proliferation. To this end, we studied endoreduplication in leaves and root tips from regenerated plantlets and somatic embryos and in developing somatic embryos under 4 types of lighting conditions: red light, red + far-red light, red + blue light, and white light. We found that the degree of endoreduplication varied in different explants, and that the choice of explants used also influenced the ploidy levels of the newly regenerated somatic embryos. The DNA content of the leaf (2C–8C) was less than that of the root tip (2C–16C) and somatic embryo (2C–64C). In terms of light quality, the combination of red and far-red light produced the highest number of somatic embryos, while maintaining a low degree of endoreduplication. The data obtained indicate that this light combination stimulates somatic embryogenesis in Doritaenopsis and may exert some control on endoreduplication during cell division. These findings can be applied to achieve a reduction in somaclonal variations for the purpose of mass proliferation and genetic improvement.  相似文献   

14.
Peanut (Arachis hypogaea L.) somatic embryos were produced from the embryo axes of mature, dry seeds of cultivar GK-7. Percent embryogenic explants ranged from 88–100% using 10–40 mg/1 of 2,4-D in the induction medium. Neither 2,4-D concentration nor photoperiod during the induction period had a large effect on percent embryogenesis, mean number of embryos per explant, or embryo morphology. However, embryos obtained from cultures grown in the dark were easier to remove from the explant than those under a 16-h photoperiod. Somatic embryos developed on the epicotyl portion of the embryo axis, primarily on the young, expanding leaves. A survey of 14 genotypes indicated that genotype had a large influence on embryogenic capacity, with all genotypes being embryogenic to some extent. The ability to recover somatic embryos from axes of harvested, stored seeds represents significant advantages for the establishment of peanut embryogenic cultures, including the use of simple sterilization procedures and a constant source of explant tissue.Abbreviations B5 medium of Gamborget al. (1968) - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) salts medium  相似文献   

15.
Summary Somatic embryogenesis in American ginseng (Panax quinquefolium L.) was investigated from three explant sources (root, leaf and epicotyl) with Murashige and Skoog (MS) medium containing different growth regulators. Mature roots and leaves obtained from 3- to 5-yr-old field-grown plants, and seedling leaves and epicotyls from plantlets grownin vitro, were evaluated. From root and epicotyl explants, callus development was optimal with 3,6-dichloro-o-anisic acid (dicamba) (9.0 μM) and kinetin (KN) (5.0 μM) as the growth regulators. When these calluses were transferred after 3 mo. to dicamba alone (9.0 μM), somatic embryo formation was observed at an average frequency of 15.6% in root explants after an additional 3 mo., and 2% in epicotyl explants after an additional 6 mo. No plantlets were recovered because the embryos germinated to form shoots with no roots. From leaf explants, callus growth was optimal with α-naphthaleneacetic acid (NAA) at 10.0 μM and 2,4-dichlorophenoxyacetic acid (2,4-D) at 9.0 μM. Somatic embryos developed on this medium, with the highest frequency (40%) obtained after 3 mo. from seedling-leaf explants. Calluses on mature leaves formed somatic embryos after 7 mo. with NAA/2,4-D at an average frequency of 30%. Transfer of these somatic embryos to 6-benzyladenine/gibberellic acid (4.4/2.9 μM) promoted shoot development but no roots were observed. Up to 100% of germination was observed within 6 wk on half-strength MS salts containing activated charcoal (1%) and on NAA/2,4-D (5.0/4.5 μM) with charcoal (1%). On the latter medium, somatic embryos enlarged and frequently gave rise to new somatic embryos after a brief callusing phase. The embryos germinated through a two-stage process, involving the elongation of the root followed by the formation of a shoot. The highest recovery of ginseng plantlets from germinated embryos was 61.0%. Following transfer to potting medium and maintenance under conditions of high humidity and low light intensity, the plantlets elongated and developed new leaves. A high percentage (50%) of these plants have been acclimatized to soil.  相似文献   

16.
Somatic embryos of Cyclamen persicum Mill. could be produced through a callus phase from juvenile explant material including anthers, ovaries and zygotic embryos. The auxin 2,4-D (1.0–1.5 mg l-1) and coconut milk (10% v/v) in MS medium were important factors for the induction of somatic embryogenesis. Somatic embryos germinated into plantlets in MS medium without growth regulators. The plants grew well in the greenhouse and flowered normally. The plants were phenotypically identical to the mother plants with a few exceptions.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthylacetic acid - IAA 3-indoleacetic acid - BA 6-benzyladenine - ABA abscisic acid - CM coconut milk  相似文献   

17.
Ponkan mandarin (Citrus reticulata Blanco) is one of the most important commercial cultivars of mandarin orange in China. This study reports an improved and efficient protocol for in vitro plant regeneration of Ponkan mandarin. Epicotyl segments, which were cut longitudinally into two halves, were used as explants. The shoot regeneration frequency was significantly increased by longitudinal cutting. A 100% shoot regeneration frequency and 13.2 shoots per explant were obtained when cultures were maintained in darkness for 20 d before being transferred to light conditions, with bud induction by indirect organogenesis. A 72.5% shoot regeneration frequency and 7.8 shoots per explant were obtained when explants were incubated under a 16-h light photoperiod continuously with buds differentiating directly from the cutting wound surface. The optimal medium for shoot formation was Murashige and Tucker basal medium supplemented with 2 mgL−1 BA and 30 gL−1 sucrose both under light conditions. The addition of the auxin NAA reduced the frequency of regeneration. A “filter-paper bridge” technique was used for rooting in this study. The basal portion of regenerated shoots was dipped into 1,000 mgL−1 IBA solution for 15 min before placement on a filter-paper bridge that was maintained in 1/2 MS liquid medium supplemented with 10 gL−1 sucrose. Eighty percent of the shoots rooted, and an average of 2.0 roots per shoot were achieved. Survival rate through acclimatization was 100%.  相似文献   

18.
Summary The types of auxin in Murashige and Skoog (MS) medium containing N 6-benzyladenine (BA) determined indirect morphogenesis, i.e. development to bipolar somatic embryos or monopolar shoots in Euphorbia nivulia Buch.-Ham. Indirect in vitro morphogenesis depended on growth regulators, explant excision period, and light. Calli induced from explants collected in March–April were superior in the induction of indirect morphogenesis to those collected in July–August. Light enforced in vitro morphogenesis, while darkness was inhibitory. The presence of kinetin in the medium also inhibited morphogenesis. Calli developed on explants collected in March–April grown on MS medium fortified with α-naphthaleneacetic acid (NAA) and BA facilitated indirect organogenesis, while those developed on medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) and BA underwent somatic embryogenesis. MS medium with 13.3 μM BA and 2.69 μM NAA was the best for induction of shoots from callus, which developed a mean of 15.7 shoots. Shoots were best rooted on half-strength MS medium enriched with 2.46 μM indole-3-butyric acid with a mean of 5.1 roots per shoot. MS medium supplemented with 2.26 μM 2,4-D and 4.44 μM BA induced the highest number (mean of 13.4) of somatic embryos. Of the embryos transferred on half-strength MS medium containing 2.89 μM gibberellic acid, 78% of embryos developed to the cotyledonary stage. Most cotyledonary embryos (80%) underwent conversion to plantlets upon being transferred to half-strength MS basal medium in light. The survival rate of organogenesis and embryo-derived plants was 80 and 90%, respectively. Calli transformed with Agrobacterium tumefaciens showed expression of the gusA transgene and resistance to kanamycin, but did not undergo morphogenesis.  相似文献   

19.
Summary Somatic embryos were obtained from a 60-yr-old Quercus suber L. tree. Leaf explants were cultivated on Murashige and Skoog medium with 30 gl−1 sucrose, 3 gl−1 gelrite, pH adjusted to 5.8, and different growth regulator combinations. Callus induction took place at 24±1°C in the dark during the first 3 wk. After 3 mo, calluses that showed embryogenic structures were transferred to the same medium without growth regulators. Somatic embryogenesis was only observed in calluses induced on E3 medium (supplemented with 4.5 μM 2,4-dichlorophenoxyacetic acid and 9.0 μM zeatin). On average, 7.5% of the initial explants formed embryogenic calluses in this medium. Somatic embryo proliferation was high due to secondary embryogenesis. On average, 10% of the somatic embryos germinated and 40% of these germinated embryos converted into plants. Plants were elongated on the same medium without growth regulators and acclimated to greenhouse conditions.  相似文献   

20.
Summary In order to establish a protocol for somatic embryogenesis of annatto, Bixa orellana L., seeds (70 d after anthesis) from field-grown orchards had their coats dissected off, and immature zygotic embryos were excised aseptically from immature seeds collected from field-grown trees and used as explants. Embryos were cultured onto MS medium supplemented with or without different combinations of plant growth regulators and activated charcoal. Direct somatic embryogenesis was induced on explants incubated either in Murashige and Skoog (MS), 2,4-dichlorophenoxyacetic acid (2,4-D), and/or kinetin-supplemented media after 25 d of culture. The highest frequencies of embryogenesis and embryos per explant were obtained on medium containing 2.26 μM 2.4-D, 4.52μM kinetin, and 1.0 gl−1 activated charcoal. The presence of charcoal was critical in increasing embryos per explant, to reduce the time to obtain somatic embryos, and mainly to prevent callus proliferation and subsequent indirect somatic embryogenesis. No embryogenic response was achieved when mature embryos were used. It was also observed that embryogenic response was significantly affected by genotype. Histological investigations revealed that primary direct somatic embryos differentiated exclusively from the protodermis or together with the outer ground meristem cell layers of the zygotic embryo axis, and from the protodermis of zygotic cotyledons. Diverse morphological differences, including malformed embryos, were observed among somatic embryos. In spite of the high frequencies of histodifferentiation of all embryo stages, a very low conversion frequency to normal plants from somatic embryos was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号