首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscarinic M(3) receptors stimulate ERK1/2, the mitogen-activated protein kinase pathway. A mutant of the muscarinic M(3) receptor in which most of the third intracellular (i3) loop had been deleted (M(3)-short) completely lost the ability to stimulate the ERK1/2 phosphorylation in COS-7 cells. This loss was evident despite the fact that the receptor was able to couple efficiently to the phospholipase C second messenger pathway. In co-transfected cells, M(3)-short greatly reduced the ability of M(3) to activate ERK1/2. In another set of experiments we tested the ability of a mutant M(3)/M(2)(16aa) receptor, in which the first 16 amino acids of the i3 loop of the M(3) receptor were replaced with the corresponding segment of the muscarinic M(2) receptor to stimulate ERK1/2 phosphorylation. This mutant is not coupled to Galpha(q), but it is weakly coupled to Galpha(i). Despite its coupling modification this receptor was able to stimulate ERK1/2 phosphorylation. Again, M(3)-short greatly reduced the ability of M(3)/M(2)(16aa) to activate ERK1/2 in co-transfected cells. Similar results were obtained in stable-transfected Chinese hamster ovary (CHO) cells lines. In CHO M(3) cells carbachol induced a biphasic increase of ERK1/2 phosphorylation; a first increase at doses as low as 0.1 microm and a second increase starting from 10 microm. In CHO M(3)-short and in double-transfected CHO M(3)/M(3)-short cells we observed only the lower doses increase of ERK1/2 phosphorylation; no further increase was observed up to 1 mm carbachol. This suggests that in double-transfected CHO cells M(3)-short prevents the effect of the higher doses of carbachol on the M(3) receptor. In a final experiment we tested the ability of co-transfected chimeric alpha(2)/M(3) and M(3)/alpha(2) receptors to activate the ERK1/2 pathway. When given alone, carbachol and, to a lesser extent, clonidine, stimulated the coupling of the co-transfected chimeric receptors to the phospholipase C second messenger pathway, but they were unable to stimulate ERK1/2 phosphorylation. On the contrary, a strong stimulation of ERK1/2 phosphorylation was observed when the two agonists were given together despite the fact that the overall increase in phosphatidylinositol hydrolysis was not dissimilar from that observed in cells treated with carbachol alone. Our data suggest that the activation of the ERK1/2 pathway requires the coincident activation of the two components of a receptor dimer.  相似文献   

2.
Bladder muscle specimens from seven patients with neurogenic bladder dysfunction were analyzed to determine whether the muscarinic receptor subtype mediating contraction shifts from M(3) to the M(2) subtype as found in the denervated, hypertrophied rat bladder. Seven bladder specimens were analyzed from six female and one male patients. Six of the patients had traumatic cervical spinal cord injuries (C(4)-C(7)), and the other patient had an L(1) congenital myelomeningocele. This was compared with results from bladder specimens obtained from eight organ transplant donors. The affinities of three subtype-selective muscarinic receptor antagonists for inhibition of carbachol-induced contractions were determined. The affinity of the M(3) selective antagonists darifenacin or p-fluoro-hexahydrosiladifenadol (p-F-HHSiD) was determined in six of the seven spinal injury patient specimens. The affinity was consistent with M(2)-mediated contractions in four of these six specimens, intermediate between M(2) and M(3) in one specimen, and within the M(3) range in one specimen. The other specimen, tested only with the M(2) selective antagonist methoctramine, showed an M(3) affinity. In the organ donors, the affinity of p-F-HHSiD was within the M(2) range for six of seven specimens, whereas the affinity of darifenacin was within the M(3) range for five of six and intermediate between M(2) and M(3) for the other specimen tested. The affinity of methoctramine in both organ donor specimens tested was within the M(3) range. Whereas normal detrusor contractions are mediated by the M(3) receptor subtype, in patients with neurogenic bladder dysfunction as well as certain organ transplant donors, contractions can be mediated by the M(2) muscarinic receptor subtype.  相似文献   

3.
The complexes of the type Cp2M(3-TC)Cl, Cp2M(3-TC)2, Cp2M(3-TA)Cl, Cp2M(3-TA)2, Cp2M(2-TB)Cl, Cp2M(2-TB)2 [where Cp = cyclopentadienyl, M = Zr or Ti] were synthesized by the reactions of dichlorobis(cyclopentadienyl)zirconium(IV) and dichlorobis(cyclopentadienyl)titanium(IV) with 3-thiophenecarboxylic acid (3-TCH), 3-thiopheneacetic acid (3-TAH) and 2-thiophenebutyric acid (2-TBH) respectively in different stoichiometric ratios. The new complexes were characterized by their elemental analysis, 1H NMR, IR, and electronic spectral data.  相似文献   

4.
Inflammation impairs the circular muscle contractile response to muscarinic (M) receptor activation. The aim of this study was to investigate whether the expression of muscarinic receptors, their binding affinity, and the expression and activation of receptor-coupled G proteins contribute to the suppression of contractility in inflammation. The studies were performed on freshly dissociated single smooth muscle cells from normal and inflamed canine ileum. Northern blotting indicated the presence of only M(2) and M(3) receptors on canine ileal circular muscle cells. Inflammation did not alter the mRNA or protein expression of M(2) and M(3) receptors. The maximal binding and K(d) values also did not differ between normal and inflamed cells. However, the contractile response to ACh in M(3) receptor-protected cells was suppressed, whereas that in M(2) receptor-protected cells was enhanced. Further experiments indicated that the expression and binding activity of G alpha(q/11) protein, which couples to M(3) receptors, were downregulated, whereas those of G alpha(i3), which couples to M(2) receptors, were upregulated in inflamed cells. We concluded that inflammation depresses M(3) receptor function, but it enhances M(2) receptor function in ileum. These effects are mediated by the differentially altered expression and binding activity of their respective coupled G alpha(q/11) and G alpha(i3) proteins.  相似文献   

5.
Optimization of the amine part of our original muscarinic M(3) receptor antagonist 1 was performed to identify M(3) receptor antagonists that are superior to 1. Compounds carrying a variety of diamine moieties without hydrophobic substituent on the nitrogen atom were screened against the binding affinity for the M(3) receptor and the selectivity for M(3) over the M(1) and M(2) receptors. This process led to a 4-aminopiperidinamide (2l) with a K(i) value of 5.1 nM and with a selectivity of the M(3) receptor that was 46-fold greater than that of the M(2) receptor. Further derivatization of 2l by inserting a spacer group or by incorporating alkyl group(s) into the amine part resulted in the identification of an 4-(aminoethyl)piperidinamide 2l-b with a K(i) value of 3.7 nM for the M(3) receptor and a selectivity for the M(3) receptor that was 170-fold greater than that of the M(2) receptor.  相似文献   

6.
beta-Arrestins regulate the functioning of G protein-coupled receptors in a variety of cellular processes including receptor-mediated endocytosis and activation of signaling molecules such as ERK. A key event in these processes is the G protein-coupled receptor-mediated recruitment of beta-arrestins to the plasma membrane. However, despite extensive knowledge in this field, it is still disputable whether activation of signaling pathways via beta-arrestin recruitment entails paired activation of receptor dimers. To address this question, we investigated the ability of different muscarinic receptor dimers to recruit beta-arrestin-1 using both co-immunoprecipitation and fluorescence microscopy in COS-7 cells. Experimentally, we first made use of a mutated muscarinic M(3) receptor, which is deleted in most of the third intracellular loop (M(3)-short). Although still capable of activating phospholipase C, this receptor loses almost completely the ability to recruit beta-arrestin-1 following carbachol stimulation in COS-7 cells. Subsequently, M(3)-short was co-expressed with the M(3) receptor. Under these conditions, the M(3)/M(3)-short heterodimer could not recruit beta-arrestin-1 to the plasma membrane, even though the control M(3)/M(3) homodimer could. We next tested the ability of chimeric adrenergic muscarinic alpha(2)/M(3) and M(3)/alpha(2) heterodimeric receptors to co-immunoprecipitate with beta-arrestin-1 following stimulation with adrenergic and muscarinic agonists. beta-Arrestin-1 co-immunoprecipitation could be induced only when carbachol or clonidine were given together and not when the two agonists were supplied separately. Finally, we tested the reciprocal influence that each receptor may exert on the M(2)/M(3) heterodimer to recruit beta-arrestin-1. Remarkably, we observed that M(2)/M(3) heterodimers recruit significantly greater amounts of beta-arrestin-1 than their respective M(3)/M(3) or M(2)/M(2) homodimers. Altogether, these findings provide strong evidence in favor of the view that binding of beta-arrestin-1 to muscarinic M(3) receptors requires paired stimulation of two receptor components within the same receptor dimer.  相似文献   

7.
The somatosensory evoked magnetic fields (SEFs) and evoked potentials (SEPs) following passive toe movement were studied in 10 normal subjects. Five main components were identified in SEFs recorded around the vertex around the foot area of the primary sensory cortex (SI). The first and second components, 1M and 2M, were identified at approximately 35 and 46 ms. Equivalent current dipoles (ECDs) of both 1M and 2M were estimated around SI in the hemisphere contralateral to the movement toe, and were probably generated in area 3a or area 2, which mainly receive inputs ascending through muscle and joint afferents. The large inter-individual difference of 1M and 2M in terms of ECD orientation was probably due to a large anatomical variance of the foot area of SI. The third and fourth components, 3M and 4M, were identified at approximately 62 ms and 87 ms, respectively. They appeared to be a single large long-duration component with two peaks. Since the 3M and 4M components were significantly larger than the 1M and 2M components in amplitude and their ECD location was significantly superior to that of 1M and 2M, we suspected that they were generated in different sites from those of 1M and 2M, probably area 3b or area 4. Four components, 1E, 2E, 3E and 4E, were identified in SEPs, which appeared to correspond to 1M, 2M, 3M and 4M, respectively. The variation observed in the scalp distribution of the primary component, 1E, could be accounted for by the variation of the orientation of ECD of the 1M component. There was a large difference in the waveform of the long-latency component (longer than 100 ms) between SEFs and SEPs. The 5E of SEPs was a large amplitude component, but the 5M of SEFs was small or absent. We speculate that this long-latency component was generated by multiple generators.  相似文献   

8.
Although previous pharmacological and biochemical data support the notion that muscarinic acetylcholine receptors (mAChR) form homo- and heterodimers, the existence of mAChR oligomers in live cells is still a matter of controversy. Here we used bioluminescence resonance energy transfer to demonstrate that M(1), M(2), and M(3) mAChR can form constitutive homo- and heterodimers in living HEK 293 cells. Quantitative bioluminescence resonance energy transfer analysis has revealed that the cell receptor population in cells expressing a single subtype of M(1), M(2), or M(3) mAChR is predominantly composed of high affinity homodimers. Saturation curve analysis of cells expressing two receptor subtypes demonstrates the existence of high affinity M(1)/M(2), M(2)/M(3), and M(1)/M(3) mAChR heterodimers, although the relative affinity values were slightly lower than those for mAChR homodimers. Short term agonist treatment did not modify the oligomeric status of homo- and heterodimers. When expressed in JEG-3 cells, the M(2) receptor exhibits much higher susceptibility than the M(3) receptor to agonist-induced down-regulation. Coexpression of M(3) mAChR with increasing amounts of the M(2) subtype in JEG-3 cells resulted in an increased agonist-induced down-regulation of M(3), suggesting a novel role of heterodimerization in the mechanism of mAChR long term regulation.  相似文献   

9.
Anti human M2 type and anti human L type pyruvate kinase sera allowed us to distinguish two groups of pyruvate kinase in man. Erythrocyte and liver (L type) enzymes on the one hand were inhibited by anti L and not all by anti M2 serum; pyruvate kinase from all the other tissues on the other hand were inhibited by anti M2 and not at all by anti L serum. This latter group represent the M type pyruvate kinase isozymes. The M type isozymes have been studied by electrofocusing in thin layer acrylamide-ampholine gel. In adult tissues 4 types of isozymes were found, designated, from acid to alkaline pH, as M2 (predominant form in spleen, leukocytes, lung...), M3, M4 and M1 (predominant form in muscle and brain). In foetal tissues an extra band M2, called M2f, more anodic than M2, was added to the previously described isozymes. Except in brain (in which the isozymes M2, M3, M4 and M1 were found), the most anodic bands (M2f, M2 and M3) were predominant in all the foetal tissues. The isozymes M2f and M2 seem therefore to be the original M type pyruvate kinase forms from which the other isozymes issue. The rate of each isozyme seems to depend on tissue factors characterizing the state of differentiation of some tissues, as indicated by the ability of adult muscle extracts to change the isozymes M2 and M3 into more cathodic forms.  相似文献   

10.
ZJ0273, propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy) benzylamino) benzoate, is a novel and broad-spectrum herbicide. In this study, 15 bacteria capable of utilizing ZJ0273 as the sole carbon source were isolated from soil. One of the isolates belonged to the family Amycolatopsis and was designated to Amycolatopsis sp. M3-1; at 30°C and pH 7.0, degradation rate of ZJ0273 could reach at 59.3% and 68.5% in 25 days and 60 days, respectively. Furthermore, six metabolites (M1–M6) during the degradation of ZJ0273 by Amycolatopsis sp. M3-1 were identified by a combination with multi-position 14C-labeled compounds (B-ZJ0273 and C-ZJ0273), chromatography, liquid scintillation spectrometer, and LC–MS, a novel pathway of ZJ0273 degradation by Amycolatopsis sp. M3-1 was proposed based on the identified metabolites and their biodegradation courses. ZJ0273 was initially hydrolyzed into M1 (4-(2-(4,6-dimethoxypyrimidin-2-yloxy) benzylamino) benzoic acid), then further oxidized into M3 (2-(4,6-dimethoxypyrimidin-2-yloxy) benzoic acid). M1 also could undergo a carbonylation into M2 (4-(2-(4,6-dimethoxypyrimidin-2-yloxy) benzamido) benzoic acid), and then its C–N and C–O bonds were cleaved to yield M3 (2-(4,6-dimethoxypyrimidin-2-yloxy) benzoic acid) and M4 (4,6-dimethoxypyrimidin-2-ol), respectively. Moreover, another two new metabolites, M5 (2-(4-hydroxy, 6-methoxypyrimidin-2-yloxy) benzoic acid) and M6 (2, 4-dihydroxy-pyrimidine) were found. M5 was formed through de-methyl of M3 and then hydrolyzed into M6.  相似文献   

11.
The matrix (M) protein of vesicular stomatitis virus (VSV) is a multifunctional protein that is responsible for condensation of the ribonucleocapsid core during virus assembly and also plays a critical role in virus budding. The M protein is also responsible for most of the cytopathic effects (CPE) observed in infected cells. VSV CPE include inhibition of host gene expression, disablement of nucleocytoplasmic transport, and disruption of the host cytoskeleton, which results in rounding of infected cells. In this report, we show that the VSV M gene codes for two additional polypeptides, which we have named M2 and M3. These proteins are synthesized from downstream methionines in the same open reading frame as the M protein (which we refer to here as M1) and lack the first 32 (M2) or 50 (M3) amino acids of M1. Infection of cells with a recombinant virus that does not express M2 and M3 (M33,51A) resulted in a delay in cell rounding, but virus yield was not affected. Transient expression of M2 and M3 alone caused cell rounding similar to that with the full-length M1 protein, suggesting that the cell-rounding function of the M protein does not require the N-terminal 50 amino acids. To determine if M2 and M3 were sufficient for VSV-mediated CPE, both M2 and M3 were expressed from a separate cistron in a VSV mutant background that readily establishes persistent infections and that normally lacks CPE. Infection of cells with the recombinant virus that expressed M2 and M3 resulted in cell rounding indistinguishable from that with the wild-type recombinant virus. These results suggest that M2 and M3 are important for cell rounding and may play an important role in viral cytopathogenesis. To our knowledge, this is first report of the multiple coding capacities of a rhabdovirus matrix gene.  相似文献   

12.
本研究旨在阐明出芽短梗霉在不同氮源培养基中形态和胞外多糖的积累及化学成分变化。采用摇瓶法培养出芽短梗霉。三种培养基的氮源分别为硝酸钠(培养基1,M1)、硫酸氨、酵母膏(培养基2,M2)和硫酸氨、蛋白胨和酵母膏(培养基3,M3)。M1培养基中,菌丝体和单细胞的生物量积累均比M2、M3低,但胞外多糖的产量则等于甚至略超过M2和M3。在指数生长的前期,白色菌丝体和酵母状细胞状态占优势。指数生长的后期,以厚垣孢子、肿大细胞和黑色菌丝体占优势。胞外多糖都能为茁霉多糖酶水解为麦芽糖和麦芽三糖,说明这些多糖的化学组成都具有(1→4,1→6)-α结构的茁霉多糖。但M1中产生的茁霉多糖结构单元为麦芽糖和麦芽三糖,且二者比例相当。M2中茁霉多糖的麦芽糖结构单元明显减少,而M3中144h后麦芽糖结构单元完全消失。这似乎表明氧化性的氮源和低溶解氧水平可能是造成茁霉多糖结构单元同时具有麦芽糖和麦芽三糖的原因。  相似文献   

13.
The present study evaluated four chimeric synthetic peptides incorporating immunodominant sequences from HTLV-1 virus. Monomeric peptides M1, M2, and M3 represent sequences from core (p19) and envelope (gp46) of the virus. The peptide M1 is a p19 (105-124) sequence, the peptide M2 is a gp46 (190-207) sequence, and the peptide M3 is a gp 46 sequence with substitution of proline at position 192 by serine. Those peptides were arranged in such a way that permits one to obtain different combinations of chimeric peptides (M1-M2, M2-M1, M1-M3, and M3-M1). Two glycine residues were used as arm spacers for separating the two sequences. The antigenicity of these peptides was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of human T cell leukemia virus type I (HTLV-I)-infected individuals (n = 24), while specificity was evaluated with anti-HTLV-II-positive samples (n = 11) and healthy blood donors (n = 25). The results were compared to plates coated with monomeric peptides M1, M2, and M3. The chimeric peptide orientation (M1-M2) and the proline at position 192 of the gp46 peptide showed higher sensitivity.  相似文献   

14.
1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) has recently been synthesized and characterized to have an anti-inflammatory activity. In the present study, pharmacokinetic parameters for FPP-3 and its metabolites were determined at the same time by using high-performance liquid chromatography-ultraviolet spectrometry. Two metabolites were detected in sera when FPP-3 was administered intravenously to male SD rats. The linearity of FPP-3, M1 (1-furan-2-yl-3-pyridin-2-yl-propan-1-one) and M2 (1-furan-2-yl-3-pyridin-2-yl-propan-1-ol) was confirmed in the concentration ranges of 0.5-20, 0.101-4.04 and 1.04-20.4 microg/ml, respectively. The lower limits of quantitation of FPP-3, M1 and M2 were 0.5, 0.1 and 1.0 microg/ml, respectively. The intra- and inter-day precision and accuracy over the concentration range of target compounds were within 13.5 and 14.2%, respectively. The half-lives of FPP-3, M1 and M2 were 16.3, 27.7 and 22.1 min, respectively.  相似文献   

15.
M(3) muscarinic receptors mediate cholinergic-induced contraction in most smooth muscles. However, in the denervated rat bladder, M(2) receptors participate in contraction because M(3)-selective antagonists [para-fluoro-hexahydro-sila-diphenidol (p-F-HHSiD) and 4-DAMP] have low affinities. However, the affinity of the M(2)-selective antagonist methoctramine in the denervated bladder is consistent with M(3) receptor mediating contraction. It is possible that two pathways interact to mediate contraction: one mediated by the M(2) receptor and one by the M(3) receptor. To determine whether an interaction exists, the inhibitory potencies of combinations of methoctramine and p-F-HHSiD for reversing cholinergic contractions were measured. In normal bladders, all combinations gave additive effects. In denervated bladders, synergistic effects were seen with the 10:1 and 1:1 (methoctramine:p-F-HHSiD wt/wt) combinations. After application of the sarcoplasmic reticulum ATPase inhibitor thapsigargin to normal tissue, the 10:1 and 1:1 ratios became synergistic, mimicking denervated tissue. Thus in normal bladders both M(2) and M(3) receptors can induce contraction. In the denervated bladder, the M(2) and the M(3) receptors interact in a facilitatory manner to mediate contraction.  相似文献   

16.
This study aims to verify whether the inhibitory effect of Sirtuin 3 (SIRT3) on the formation of renal calcium oxalate crystals was mediated through promoting macrophages (Mϕs) polarization. Identification and quantification of M1 and M2 monocytes were performed using fluorescence-activated cell sorting analysis. SIRT3 protein level and forkhead box O1 (FOXO1) acetylation level were measured using western blot analysis. Cell apoptosis of HK-2 was detected by flow cytometry. Mouse kidney tissues were subjected to Von Kossa staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and immunohistochemical staining for detection of kidney crystals deposition, apoptosis, and expression of crystal-related molecules, respectively. The results showed that human peripheral blood monocytes from patients with kidney stone (KS) exhibited decreased M2 monocytes percentage and SIRT3 expression, whereas increased FOXO1 acetylation compared with the normal controls. In vitro assay revealed that SIRT3 overexpression in bone marrow-derived M0/M1/M2 Mϕs induced M2 polarization and decreased FOXO1 acetylation. Furthermore, FOXO1 knockdown reversed SIRT3-mediated induction of M2 polarization and inhibition of HK-2 (human proximal tubular cell line) apoptosis. Further in vivo experiments demonstrated that SIRT3-overexpressing Mϕs transfusion not only induced M2 polarization, but also alleviated inflammation, apoptosis, and crystals deposition in glyoxylate-induced KS mice. In conclusion, SIRT3 suppresses formation of renal calcium oxalate crystals through promoting M2 polarization via deacetylating FOXO1.  相似文献   

17.
Negative chronotropic and smooth muscle contractile responses to the nonselective muscarinic agonist carbamylcholine were compared in isolated tissues from M(3)-muscarinic receptor knockout and wild-type mice. Carbamylcholine (10(-8)-3.0 x 10(-5) M) induced a concentration-dependent decrease in atrial rate that was similar in atria from M(3)-receptor knockout and wild-type mice, indicating that M(3) receptors were not involved in muscarinic receptor-mediated atrial rate decreases. In contrast, the M(3) receptor was a major muscarinic receptor involved in smooth muscle contraction of stomach fundus, urinary bladder, and trachea, although differences existed in the extent of M(3)-receptor involvement among the tissues. Contraction to carbamylcholine was virtually abolished in urinary bladder from M(3)-receptor knockout mice, suggesting that contraction was predominantly due to M(3)-receptor activation. However, approximately 50-60% maximal contraction to carbamylcholine occurred in stomach fundus and trachea from M(3)-receptor knockout mice, indicating that contraction in these tissues was also due to M(2)-receptor activation. High concentrations of carbamylcholine relaxed the stomach fundus from M(3)-receptor knockout mice by M(1)-receptor activation. Thus M(3)-receptor knockout mice provided unambiguous evidence that M(3) receptors 1) play no role in carbamylcholine-induced atrial rate reduction, 2) are the predominant receptor mediating carbamylcholine-induced urinary bladder contractility, and 3) share contractile responsibility with M(2) receptors in mouse stomach fundus and trachea.  相似文献   

18.
The activation of T lymphocyte is accompanied by the release of soluble interleukin-2 receptors (sIL-2R) which can be assessed in biological fluids. A prospective study of the dynamic changes in sIL-2R levels was performed in the serum of 10 patients undergoing a medical treatment for Graves' disease. All patients received carbimazole during the study and, when necessary, L-thyroxine to compensate hypothyroidism. sIL-2R levels were measured before (M0) and after the 1st (M1), 3rd (M3) and 6th month (M6) of treatment. The levels of sIL-2R were high at M0 and M1, and decreased significantly between M1 and M3 (p = 0.03). At M0, the levels of sIL-2R were highly correlated with triiodothyronine (T3) levels (p = 0.0003), early [131I] uptake (p = 0.007) and, to a lesser degree, with anti-thyrotropin receptor antibody levels (p = 0.02). At M6, no correlation was found anymore. We conclude that sIL-2R levels are increased in patients with untreated Graves' disease. They are highly correlated with the markers of Graves' disease activity and decrease during medical treatment.  相似文献   

19.
Pirenzepine (2) is one of the most selective muscarinic M(1) versus M(2) receptor antagonists known. A series of 2 analogs, in which the piperazyl moiety was replaced by a cis- and trans-cyclohexane-1,2-diamine (3-6) or a trans- and cis-perhydroquinoxaline rings (7 and 8) were prepared, with the aim to investigate the role of the piperazine ring of 2 in the interaction with the muscarinic receptors. The structural change leading to compounds 3-6 abolished in binding assays the muscarinic M(1)/M(2) selectivity of 2, due to an increased M(2) affinity. Rather, compounds 3-6 displayed a reversed selectivity showing more affinity at the muscarinic M(2) receptor than at all the other subtypes tested.  相似文献   

20.
Several novel methoctramine-related tetraamines were designed, and their biological profiles at muscarinic receptor subtypes were assessed by functional experiments in isolated guinea pig and rat atria (M2) and smooth muscle (ileum and trachea, M3) and by binding assays in rat cortex (M1), heart (M2), and submaxillary gland (M3) homogenates and NG 108-15 cells (M4). Tripitramine, a nonsymmetrical tetraamine, resulted in the most potent and the most selective muscarinic M2 receptor antagonist of the series (pA2 = 9.14-9.85; pKi = 9.54). Spirotramine (FC 15-94), a symmetrical tetraamine, was able to differentiate between muscarinic M1 receptors (pKi = 7.88) and the other subtypes (M2, pKi = 6.20; M3, pKi = 5.81; M4, pKi = 6.27). Thus, tripitramine and spirotramine could be valuable tools for the pharmacological classification and characterization of muscarinic receptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号