首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Furutani Y  Sudo Y  Kamo N  Kandori H 《Biochemistry》2003,42(17):4837-4842
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psRII) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR activates the cognate transducer protein, pHtrII, upon absorption of light. ppR and pHtrII form a tight 2:2 complex in the unphotolyzed state, and the interaction is somehow altered during the photocycle of ppR. In this paper, we studied the influence of pHtrII on the structural changes occurring upon retinal photoisomerization in ppR by means of low-temperature FTIR spectroscopy. We trapped the K intermediate at 77 K and compared the ppR(K) minus ppR spectra in the absence and presence of pHtrII. There are no differences in the X-D stretching vibrations (2700-1900 cm(-1)) caused by presence of pHtrII. This result indicates that the hydrogen-bonding network in the Schiff base region is not altered by interaction with pHtrII, which is consistent with the same absorption spectrum of ppR with or without pHtrII. In contrast, the ppR(K) minus ppR infrared difference spectra are clearly influenced by the presence of pHtrII in amide-I (1680-1640 cm(-1)) and amide-A (3350-3250 cm(-1)) vibrations. The identical spectra for the complex of the unlabeled ppR and (13)C- or (15)N-labeled pHtrII indicate that the observed structural changes for the peptide backbone originate from ppR only and are altered by retinal photoisomerization. The changes do not come from pHtrII, implying that the light signal is not transmitted to pHtrII in ppR(K). In addition, we observed D(2)O-insensitive bands at 3479 (-)/3369 (+) cm(-1) only in the presence of pHtrII, which presumably originate from an X-H stretch of an amino acid side chain inside the protein.  相似文献   

2.
Kamada K  Furutani Y  Sudo Y  Kamo N  Kandori H 《Biochemistry》2006,45(15):4859-4866
Pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronomonas pharaonis. In membranes, it forms a 2:2 complex with its transducer protein pHtrII, and the association is weakened by 2 orders of magnitude in the M intermediate (ppR(M)). Such a change is believed to correspond to the transfer of the light signal to pHtrII. A previous Fourier transform infrared (FTIR) study observed hydrogen-bonding alteration of Asn74 in pHtrII in the M state, suggesting a light-signaling pathway from the receptor to the transducer [Furutani, Y., Kamada, K., Sudo, Y., Shimono, K., Kamo, N., and Kandori, H. (2005) Biochemistry 44, 2909-2915]. In this paper, we measure temperature dependence of the ppR(M) minus ppR spectra in the absence and presence of pHtrII at 250-293 K. Significant temperature dependence was observed for the amide-I vibrations of helices only for the ppR/pHtrII complex, where the amplitude of amide-I vibrations was reduced at room temperature. (13)C-Labeling of ppR or pHtrII revealed that such spectral changes of helices originate from ppR and not pHtrII. The hydrogen-bonding alteration of Asn74 in pHtrII was temperature-independent, implying that the observed helical structural perturbation in ppR takes place in different region. On the other hand, temperature-dependent structural changes of helices were diminished for the complex of ppR with the G83C and G83F mutants of pHtrII. Gly83 is believed to connect the transmembrane helix and cytosolic linker region in a flexible kink near the membrane surface of pHtrII, and its replacement by Cys or Phe abolishes the photosensory function. The present study provides direct experimental evidence that Gly83 plays an important structural role in the activation processes of the ppR/pHtrII complex. A molecular mechanism of protein structural changes in the ppR/pHtrII complex is discussed on the basis of the present FTIR results.  相似文献   

3.
Sudo Y  Furutani Y  Shimono K  Kamo N  Kandori H 《Biochemistry》2003,42(48):14166-14172
Pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronobacterium pharaonis. It forms a 2:2 complex with its transducer protein, pHtrII, in membranes and transmits light signals through the change in the protein-protein interaction. We previously found that the ppR(K) minus ppR spectrum in D(2)O possesses vibrational bands of ppR at 3479 (-)/3369 (+) cm(-1) only in the presence of pHtrII [Furutani, Y., Sudo, Y., Kamo, N., and Kandori, H. (2003) Biochemistry 42, 4837-4842]. A D/H-unexchangeable X-H group appears to form a stronger hydrogen bond upon retinal photoisomerization in the ppR-pHtrII complex. This article aims to identify the group by use of various mutant proteins. According to the crystal structure, Tyr-199 of ppR forms a hydrogen bond with Asn-74 of pHtrII in the complex. Nevertheless, the 3479 (-)/3369 (+) cm(-1) bands were preserved in the Y199F mutant, excluding the possibility that the bands are O-H stretches of Tyr-199. On the other hand, Thr-204 and Tyr-174 form a hydrogen bond between the retinal chromophore pocket and the binding surface of the ppR-pHtrII complex. These FTIR measurements revealed that the bands at 3479 (-)/3369 (+) cm(-1) disappeared in the T204A mutant, while being shifted to 3498 (-) and 3474 (+) cm(-1) in the T204S mutant. They appear at 3430 (-)/3402 (+) cm(-1) in the Y174F mutant. From these results, we concluded that the bands at 3479 (-)/3369 (+) cm(-1) originate from the O-H stretch of Thr-204. A stronger hydrogen bond as shown by a large spectral downshift (110 cm(-1)) suggests that the specific hydrogen bonding alteration of Thr-204 takes place upon retinal photoisomerization, which does not occur in the absence of the transducer protein. Thr-204 has been known as an important residue for color tuning and photocycle kinetics in ppR. The results presented here point to an additional important role of Thr-204 in ppR for the interaction with pHtrII. Specific interaction in the complex that involves Thr-204 presumably affects the decay kinetics and binding affinity in the M intermediate.  相似文献   

4.
Furutani Y  Iwamoto M  Shimono K  Wada A  Ito M  Kamo N  Kandori H 《Biochemistry》2004,43(18):5204-5212
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the retinal chromophore is thermally isomerized from the 13-cis to all-trans form. We employed FTIR spectroscopy of ppR at 260 K and pH 5 to reveal that this isomerization occurs upon formation of the O intermediate (ppR(O)) by using ppR samples reconstituted with 12,14-D(2)-labeled retinal. In ppR(O), C=O stretching vibrations of protonated carboxylates newly appear at 1757 (+)/1722 (-) cm(-1) in H(2)O and at 1747 (+)/1718 (-) cm(-1) in D(2)O in addition to the 1765 (+) cm(-1) band of Asp75. Amide I vibrations are basically similar between ppR(M) and ppR(O), whereas unique bands of ppR(O) are also observed such as the negative 1656 cm(-1) band in D(2)O and intense bands at 1686 (-)/1674 (+) cm(-1). In addition, O-D stretching vibrations of water molecules in the entire mid-infrared region are assigned for ppR(M) and ppR(O), the latter being unique for ppR, since it can be detected at low temperature (260 K). The ppR(M) minus ppR difference spectra lack the lowest frequency water band (2215 cm(-1)) observed in the ppR(K) minus ppR spectra, which is probably associated with water that interacts with the negative charges in the Schiff base region. It is likely that the proton transfer from the Schiff base to Asp75 in ppR(M) can be explained by a hydration switch of a water from Asp75 to Asp201, as was proposed for the light-driven proton-pump bacteriorhodopsin (hydration switch model) [Tanimoto, T., Furutani, Y., and Kandori, H. (2003) Biochemistry 42, 2300-2306]. In the transition from ppR(M) to ppR(O), a hydrogen-bonding alteration takes place for another water molecule that forms a strong hydrogen bond.  相似文献   

5.
Sudo Y  Furutani Y  Iwamoto M  Kamo N  Kandori H 《Biochemistry》2008,47(9):2866-2874
pharaonis phoborhodopsin ( ppR, also called pharaonis sensory rhodopsin II, psRII) is a receptor for negative phototaxis in Natronomonas pharaonis. The X-ray crystallographic structure of ppR is very similar to those of the ion-pumping rhodopsins, bacteriorhodopsin (BR) and halorhodopsin (hR). However, the decay processes of the photocycle intermediates such as M and O are much slower than those of BR and hR, which is advantageous for the sensor function of ppR. Iwamoto et al. previously found that, in a quadruple mutant (P182S/P183E/V194T/T204C; denoted as SETC) of ppR, the decay of the O intermediate was accelerated by approximately 100 times ( t 1/2 approximately 6.6 ms vs 690 ms for the wild type of ppR), being almost equal to that of BR (Iwamoto, M., et al. (2005) Biophys. J. 88, 1215-1223). The mutated residues are located on the extracellular surface (Pro182, Pro183, and Val194) and near the Schiff base (Thr204). The present Fourier-transform infrared (FTIR) spectroscopy of SETC revealed that protein structural changes in the K and M states were similar to those of the wild type. In contrast, the ppR O minus ppR infrared difference spectra of SETC are clearly different from those of the wild type in amide-I (1680-1640 cm (-1)) and S-H stretching (2580-2520 cm (-1)) vibrations. The 1673 (+) and 1656 (-) cm (-1) bands newly appear for SETC in the frequency region typical for the amide-I vibration of the alpha II- and alpha I-helices, respectively. The intensities of the 1673 (+) cm (-1) band of various mutants were well correlated with their O-decay half-times. Since the alpha II-helix possesses a considerably distorted structure, the result implies that distortion of the helix is required for fast O-decay. In addition, the characteristic changes in the S-H stretching vibration of Cys204 were different between SETC and T204C, suggesting that structural change near the Schiff base was induced by mutations of the extracellular surface. We conclude that the lifetime of the O intermediate in ppR is regulated by the distorted alpha-helix and strengthened hydrogen bond of Cys204.  相似文献   

6.
pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. In halobacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. In the present work, the truncated transducer, t-Htr, was used which interacts with ppR [Sudo et al. (2001) Photochem. Photobiol. 74, 489-494]. Two water-soluble reagents, hydroxylamine and azide, reacted both with the transducer-free ppR and with the complex ppR/t-Htr (the complex between ppR and its truncated transducer). In the dark, the bleaching rates caused by hydroxylamine were not significantly changed between transducer-free ppR and ppR/t-Htr, or that of the free ppR was a little slower. Illumination accelerated the bleach rates, which is consistent with our previous conclusion that the reaction occurs selectively at the M-intermediate, but the rate of the complex was about 7.4-fold slower than that of the transducer-free ppR. Azide accelerated the M-decay, and its reaction rate of ppR/t-Htr was about 4.6-fold slower than free ppR. These findings suggest that the transducer binding decreases the water accessibility around the chromophore at the M-intermediate. Its implication is discussed.  相似文献   

7.
Archaeal rhodopsins possess a retinal molecule as their chromophores, and their light energy and light signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of the protein then leads to functional processes, proton pump in bacteriorhodopsin and transducer activation in sensory rhodopsins. In the present paper, low-temperature Fourier transform infrared spectroscopy is applied to phoborhodopsin from Natronobacterium pharaonis (ppR), a photoreceptor for the negative phototaxis of the bacteria, and infrared spectral changes before and after photoisomerization are compared with those of bacteriorhodopsin (BR) at 77 K. Spectral comparison of the C--C stretching vibrations of the retinal chromophore shows that chromophore conformation of the polyene chain is similar between ppR and BR. This fact implies that the unique chromophore-protein interaction in ppR, such as the blue-shifted absorption spectrum with vibrational fine structure, originates from both ends, the beta-ionone ring and the Schiff base regions. In fact, less planer ring structure and stronger hydrogen bond of the Schiff base were suggested for ppR. Similar frequency changes upon photoisomerization are observed for the C==N stretch of the retinal Schiff base and the stretch of the neighboring threonine side chain (Thr79 in ppR and Thr89 in BR), suggesting that photoisomerization in ppR is driven by the motion of the Schiff base like BR. Nevertheless, the structure of the K state after photoisomerization is different between ppR and BR. In BR, chromophore distortion is localized in the Schiff base region, as shown in its hydrogen out-of-plane vibrations. In contrast, more extended structural changes take place in ppR in view of chromophore distortion and protein structural changes. Such structure of the K intermediate of ppR is probably correlated with its high thermal stability. In fact, almost identical infrared spectra are obtained between 77 and 170 K in ppR. Unique chromophore-protein interaction and photoisomerization processes in ppR are discussed on the basis of the present infrared spectral comparison with BR.  相似文献   

8.
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.  相似文献   

9.
We have recorded (13)C nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala, [1-(13)C]Val-labeled pharaonis phoborhodopsin (ppR or sensory rhodopsin II) incorporated into egg PC (phosphatidylcholine) bilayer, by means of site-directed high-resolution solid-state NMR techniques. Seven (13)C NMR signals from transmembrane alpha-helices were resolved for [3-(13)C]Ala-ppR at almost the same positions as those of bacteriorhodopsin (bR), except for the suppressed peaks in the loop regions in spite of the presence of at least three Ala residues. In contrast, (13)C NMR signals from the loops were visible from [1-(13)C]Val-ppR but their peak positions of the transmembrane alpha-helices are not always the same between ppR and bR. The motional frequency of the loop regions in ppR was estimated as 10(5) Hz in view of the suppressed peaks from [3-(13)C]Ala-ppR due to interference with proton decoupling frequency. We found that conformation and dynamics of ppR were appreciably altered by complex formation with a cognate truncated transducer pHtr II (1-159). In particular, the C-terminal alpha-helix protruding from the membrane surface is involved in the complex formation and subsequent fluctuation frequency is reduced by one order of magnitude.  相似文献   

10.

We describe the preparation and properties of lipodisc nanoparticles–lipid membrane fragments with a diameter of about 10 nm, stabilized by amphiphilic synthetic polymer molecules. We used the lipodisc nanoparticles made of Escherichia coli polar lipids and compared lipodisc nanoparticles that contained the photosensitive protein complex of the sensory rhodopsin with its cognate transducer from the halobacterium Natronomonas pharaonis with empty lipodisc nanoparticles that contained no protein. The lipodisc nanoparticles were characterized by dynamic light scattering, transmission electron microscopy and atomic force microscopy. We found that the diameter of lipodisc nanoparticles was not affected by incorporation of the protein complexes, which makes them a prospective platform for single-molecule studies of membrane proteins.

  相似文献   

11.
Sudo Y  Iwamoto M  Shimono K  Kamo N 《Biochemistry》2004,43(43):13748-13754
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, NpSRII) is a receptor for negative phototaxis in Natronomonas (Natronobacterium) pharaonis. In membranes, it forms a 2:2 complex with its transducer protein, pHtrII, which transmits light signals into the cytoplasmic space through protein-protein interactions. We previously found that a specific deprotonated carboxyl of ppR or pHtrII strengthens their binding [Sudo, Y., et al. (2002) Biophys. J. 83, 427-432]. In this study we aim to identify this carboxyl group. Since the D75N mutant has only one photointermediate (ppR(O)(-)(like)) whose existence spans the millisecond time range, the analysis of its decay rate is simple. We prepared various D75N mutants such as D75N/D214N, D75N/K157Q/R162Q/R164Q (D75N/3Gln), D75N/D193N, and D75N/D193E, among which only D75N/D193N did not show pH dependence with regard to the ppR(O)(-)(like) decay rate and K(D) value for binding, implying that the carboxyl group in question is from Asp-193. The pK(a) of this group decreased to below 2 when a complex was formed. Therefore, we conclude that Asp-193(p)()(pR) is connected to the distant transducer-ppR binding surface via hydrogen bonds, thereby modulating its pK(a). In addition, we discuss the importance of Arg-162(p)()(pR) with respect to the binding activity.  相似文献   

12.
The L to M reaction of the bacteriorhodopsin photocycle includes the crucial proton transfer from the retinal Schiff base to Asp85. In spite of the importance of the L state in deciding central issues of the transport mechanism in this pump, the serious disagreements among the three published crystallographic structures of L have remained unresolved. Here, we report on the X-ray diffraction structure of the L state, to 1.53-1.73 A resolutions, from replicate data sets collected from six independent crystals. Unlike earlier studies, the partial occupancy refinement uses diffraction intensities from the same crystals before and after the illumination to produce the trapped L state. The high reproducibility of inter-atomic distances, and bond angles and torsions of the retinal, lends credibility to the structural model. The photoisomerized 13-cis retinal in L is twisted at the C(13)=C(14) and C(15)=NZ double-bonds, and the Schiff base does not lose its connection to Wat402 and, therefore, to the proton acceptor Asp85. The protonation of Asp85 by the Schiff base in the L-->M reaction is likely to occur, therefore, via Wat402. It is evident from the structure of the L state that various conformational changes involving hydrogen-bonding residues and bound water molecules begin to propagate from the retinal to the protein at this stage already, and in both extracellular and cytoplasmic directions. Their rationales in the transport can be deduced from the way their amplitudes increase in the intermediates that follow L in the reaction cycle, and from the proton transfer reactions with which they are associated.  相似文献   

13.
pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. In halobacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. In the present work, the truncated transducer, t-Htr, was used which interacts with ppR [Sudo et al. (2001) Photochem. Photobiol. 74, 489-494]. Two water-soluble reagents, hydroxylamine and azide, reacted both with the transducer-free ppR and with the complex ppR/t-Htr (the complex between ppR and its truncated transducer). In the dark, the bleaching rates caused by hydroxylamine were not significantly changed between transducer-free ppR and ppR/t-Htr, or that of the free ppR was a little slower. Illumination accelerated the bleach rates, which is consistent with our previous conclusion that the reaction occurs selectively at the M-intermediate, but the rate of the complex was about 7.4-fold slower than that of the transducer-free ppR. Azide accelerated the M-decay, and its reaction rate of ppR/t-Htr was about 4.6-fold slower than free ppR. These findings suggest that the transducer binding decreases the water accessibility around the chromophore at the M-intermediate. Its implication is discussed.  相似文献   

14.
The configuration of the retinylidene chromophore in pharaonis phoborhodopsin (ppR) and its changes during the photoreaction cycle were investigated by means of a chromophore extraction method followed by HPLC analysis. The ppR has an all-trans chromophore, and unlike bacteriorhodopsin, it exhibits no dark isomerization of the chromophore. Irradiation of a ppR sample in the presence of 10 mM hydroxylamine, at which concentration a negligible amount of ppR was bleached, caused the formation of 90% 13-cis- and 10% all-trans-retinal oximes. Because the ppR sample under the continuous irradiation was a mixture containing original ppR, ppRM, and a small amount of ppRO, the above results showed that the chromophores of ppRM and ppRO are in a 13-cis form and an all-trans form, respectively. Therefore, the all-trans chromophore of ppR is isomerized to the 13-cis form on photon absorption, and it is thermally reisomerized to the all-trans form on the conversion process from ppRM to ppRO. The extracted retinal oximes from ppR and ppRO were mainly the 15-syn form, while that from ppRM was mainly the 15-anti form. This fact indicated that the attack of hydroxylamine on the chromophore is stereoselective owing to the unique structure of the chromophore binding site near the Schiff base region of the chromophore.  相似文献   

15.
Natronobacterium pharaonis has retinal proteins, one of which is pharaonis phoborhodopsin, abbreviated as ppR (or called pharaonis sensory rhodopsin II, psR-II). This pigment protein functions as a photoreceptor of the negative phototaxis of this bacterium. On photoexcitation ppR undergoes photocycling; the photoexcited state relaxes in the dark and returns to the original state via several intermediates. The photocycle of ppR resembles that of bR except in wavelengths and rate. The cycle of bR is completed in 10 ms while that of ppR takes seconds. The Arrhenius analysis of M-intermediate (ppR(M)) decay which is rate-limiting revealed that the slow decay is due to the large negative activation entropy of ppR. The addition of azide increases the decay rate 300-fold (at pH 7); Arrhenius analysis revealed decreases in the activation energy (activation enthalpy) and a further decrease in the activation entropy.  相似文献   

16.
A complex of photoreceptor phoborhodopsin (ppR; also called sensory rhodopsin II) and its cognate halobacterial transducer II (pHtrII) existing in the plasma membrane mediates the light signal to the cytoplasm in the earliest step of negative phototaxis in Natronomonas pharaonis. We have investigated the dynamics of the light-induced conformational changes of the ppR/pHtrII(1-159) complex formed in the presence of 0.1% n-dodecyl beta-d-maltoside (DDM) by a fluorescence resonance energy transfer (FRET) based method. Fluorescence donor and acceptor dyes were linked to cysteine residues genetically introduced at given positions in pHtrII and ppR. The light-induced FRET efficiency changes for various pairs of dye-labeled cysteine residues were determined to examine dynamics of movements of given residues in the transmembrane and the linker region including the HAMP domain in pHtrII induced by photoexcitation of ppR. Upon flash excitation of ppR, FRET efficiency changed depending on pairs of the labeled cysteine residues. The distances between V185 in ppR and the five given residues (102 through 141) in the pHtrII linker region estimated from the FRET efficiency increased by 0.3-0.8 A; on the other hand, the distances between S31 in ppR and the five residues in pHtrII decreased. The changes arose within 70 ms (the dead time of instrument) and decayed at a rate of 1.1 +/- 0.2 s. Azide significantly increased the decay rate of light-induced FRET efficiency changes by accelerating the decay of the M state of ppR. The decay rate of FRET efficiency changes coincided with the rate of recovery of the ppR to the initial state but not the decay of the M state. We conclude that the light-induced conformational change of pHtrII occurs before, at the formation or during the M state, and its relaxation is coupled tightly with the decay of the O state of ppR in the 1:1 complex formed in the DDM micelle.  相似文献   

17.
Suzuki D  Sudo Y  Furutani Y  Takahashi H  Homma M  Kandori H 《Biochemistry》2008,47(48):12750-12759
Sensory rhodopsin I (SRI) is one of the most interesting photosensory receptors in nature because of its ability to mediate opposite signals depending on light color by photochromic one-photon and two-photon reactions. Recently, we characterized SRI from eubacterium Salinibacter ruber (SrSRI). This protein allows more detailed information about the structure and structural changes of SRI during its action to be obtained. In this paper, Fourier transform infrared (FTIR) spectroscopy is applied to SrSRI, and the spectral changes upon formation of the K and M intermediates are compared with those of other archaeal rhodopsins, SRI from Halobacterium salinarum (HsSRI), sensory rhodopsin II (SRII), bacteriorhodopsin (BR), and halorhodopsin (HR). Spectral comparison of the hydrogen out-of-plane (HOOP) vibrations of the retinal chromophore in the K intermediates shows that extended choromophore distortion takes place in SrSRI and HsSRI, as well as in SRII, whereas the distortion is localized in the Schiff base region in BR and HR. It appears that sensor and pump functions are distinguishable from the spectral feature of HOOP modes. The HOOP band at 864 cm(-1) in SRII, important for negative phototaxis, is absent in SrSRI, suggesting differences in signal transfer mechanism between SRI and SRII. The strongly hydrogen-bound water molecule, important for proton pumps, is observed at 2172 cm(-1) in SrSRI, as well as in BR and SRII. The formation of the M intermediate accompanies the appearance of peaks at 1753 (+) and 1743 (-) cm(-1), which can be interpreted as the protonation signal of the counterion (Asp72) and the proton release signal from an unidentified carboxylic acid, respectively. The structure and structural changes of SrSRI are discussed on the basis of the present infrared spectral comparisons with other rhodopsins.  相似文献   

18.
Phoborhodopsin (pR; also sensory rhodopsin II, sRII) is a retinoid protein in Halobacterium salinarum and works as a receptor of negative phototaxis. Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. In bacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. We expressed pHtrII-free ppR or ppR-pHtrII complex in H. salinarum Pho81/wr(-) cells. Flash-photolysis experiments showed no essential changes between pHtrII-free ppR and the complex. Using SnO2 electrode, which works as a sensitive pH electrode, and envelope membrane vesicles, we showed the photo-induced outward proton transport. This membranous proton transport was also shown using membrane vesicles from Escherichia coli in which ppR was functionally expressed. On the other hand, the proton transport was ceased when ppR formed a complex with pHtrII. Using membrane sheet, it was shown that the complex undergoes first proton uptake and then release during the photocycle, the same as pHtrII-free ppR, although the net proton transport ceases. Taking into consideration that the complex of sRII (pR) and its transducer undergoes extracellular proton circulation (J. Sasaki and J. L., Biophys. J. 77:2145-2152), we inferred that association with pHtrII closes a cytoplasmic channel of ppR, which lead to the extracellular proton circulation.  相似文献   

19.
Shimono K  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(25):7801-7806
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. Recent X-ray crystallographic structures showed that ppR and bacteriorhodopsin (BR), a light-driven proton pump, possess similar molecular environments of the retinal Schiff base. Nevertheless, absorption spectra are different by 70 nm between ppR and BR, suggesting the different chromophore-protein interactions involving the Schiff base region. In this article, we identify frequencies of the Schiff base vibrations in the ppR(K) minus ppR difference spectra by means of low-temperature FTIR spectroscopy of [zeta-(15)N]lysine-labeled ppR. The N-D stretch in D(2)O was found at 2140 and 2091 cm(-1) for ppR, which are shifted to a lower frequency by 32-33 cm(-1) compared to those for BR. This observation indicates the stronger hydrogen bond of the Schiff base in ppR than in BR. The N-D stretch of the Schiff base and O-D stretch of water molecules are located at the different frequencies in ppR, while they appear in the same frequency region in BR [Kandori, H., Belenky, M., and Herzfeld, J. (2002) Biochemistry 41, 6026-6031]. These differences could be correlated with the distorted pentagonal cluster structure in ppR. In contrast, the N-D stretch of ppR(K) was found at 2474 cm(-1), which is close in frequency to that of BR(K). The O-D stretch of Thr79 was also assigned at 2512 and 2474 cm(-1) for ppR and ppR(K), respectively. These frequencies are close to those of BR, suggesting the interaction of Thr79 and Asp75 in ppR is similar to that of Thr89 and Asp85 in BR.  相似文献   

20.
Hayashi K  Sudo Y  Jee J  Mishima M  Hara H  Kamo N  Kojima C 《Biochemistry》2007,46(50):14380-14390
Halobacterial pharaonis phoborhodopsin [ppR, also called Natronomonas pharaonis sensory rhodopsin II (NpSRII)] is a phototaxis protein which transmits a light signal to the cytoplasm through its transducer protein (pHtrII). pHtrII, a two-transmembrane protein that interacts with ppR, belongs to the group of methyl-accepting chemotaxis proteins (MCPs). Several mutation studies have indicated that the linker region connecting the transmembrane and methylation regions is necessary for signal transduction. However, the three-dimensional (3D) structure of an MCP linker region has yet to be reported, and hence, details concerning the signal transduction mechanism remain unknown. Here the structure of the pHtrII linker region was investigated biochemically and biophysically. Following limited proteolysis, only one trypsin resistant fragment in the pHtrII linker region was identified. This fragment forms a homodimer with a Kd value of 115 microM. The 3D structure of this fragment was determined by solution NMR, and only one alpha-helix was found between two HAMP domains of the linker region. This alpha-helix was significantly stabilized within transmembrane protein pHtrII as revealed by CW-EPR. The presence of Af1503 HAMP domain-like structures in the linker region was supported by CD, NMR, and ELDOR data. The alpha-helix determined here presumably works as a mechanical joint between two HAMP domains in the linker region to transfer the photoactivated conformational change downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号