共查询到20条相似文献,搜索用时 0 毫秒
1.
A branch bag and CO2 control system for long-term CO2 enrichment of mature Sitka spruce [Picea sitchensis (Bong.) Carr.] 总被引:3,自引:2,他引:3
This paper describes the construction and performance of branch bags and a CO2 control system used to fumigate branches of mature Sitka spruce trees with air enriched in CO2 (700 μmolmol-1). It contains some examples of results obtained using the system over the course of the first two growing seasons. The branch bags have run continuously for 2 years with very few problems. CO2 concentrations were within 20 μmol mol-1 of the target concentration for more than 90% of the time. Temperatures within the bags were slightly higher than ambient (1–2 °C) and this had some effect on phenology. Attenuation of quantum flux density (photosynthetically active radiation) was 10–15%. The branch bag system has enabled investigation into the effects of elevated CO2 on mature tissue without the problems and expense of fumigating whole trees. Growth in elevated CO2 resulted in an increase in starch and a decrease in soluble protein content of needles. Stomatal conductance was higher in elevated CO2 grown needles, and there was some evidence of an increase in photosynthetic capacity. 相似文献
2.
D. EAMUS 《Plant, cell & environment》1991,14(8):843-852
Abstract. Recent data concerning the impact of elevated atmospheric CO2 upon water use efficiency (WUE) and the related measure, instantaneous transpiration efficiency (ITE), are reviewed. It is concluded from both short and long-term studies that, at the scale of the individual leaf or plant, an increase in WUE or ITE is generally observed in response to increased atmospheric CO2 levels. However, the magnitude of this increase may decline with time. The opinion that elevated CO2 may substantially decrease transpiration at the regional scale is discussed. The mechanisms by which elevated CO2 may cause a change in these measures are discussed in terms of stomatal conductance, assimilation and respiration responses to elevated CO2 . Finally, recent experimental data and model outputs concerning the impact of the interaction of increased temperature with elevated CO2 on WUE, ITE and yield are reviewed. It is concluded that substantially more data is required before reliable predictions about the regional scale response of WUE and catchment hydrology can be made. 相似文献
3.
Definitions of the variables used and the units are given in Table 1
The literature reports enormous variation between species in the extent of stomatal responses to rising CO
Table 1 . Abbreviations 相似文献
4.
Abstract. Very little attention has been directed at the responses of tropical plants to increases in global atmospheric CO2 concentrations and the potential climatic changes. The available data, from greenhouse and laboratory studies, indicate that the photosynthesis, growth and water use efficiency of tropical plants can increase at higher CO2 concentrations. However, under field conditions abiotic (light, water or nutrients) or biotic (competition or herbivory) factors might limit these responses. In general, elevated atmospheric CO2 concentrations seem to increase plant tolerance to stress, including low water availability, high or low temperature, and photoinhibition. Thus, some species may be able to extend their ranges into physically less favourable sites, and biological interactions may become relatively more important in determining the distribution and abundance of species. Tropical plants may be more narrowly adapted to prevailing temperature regimes than are temperate plants, so expected changes in temperature might be relatively more important in the tropics. Reduced transpiration due to decreased stomatal conductance could modify the effects of water stress as a cue for vegetative or reproductive phenology of plants of seasonal tropical areas. The available information suggests that changes in atmospheric CO2 concentrations could affect processes as varied as plant/herbivore interactions, decomposition and nutrient cycling, local and geographic distributions of species and community types, and ecosystem productivity. However, data on tropical plants are few, and there seem to be no published tropical studies carried out in the field. Immediate steps should be undertaken to reduce our ignorance of this critical area. 相似文献
5.
Photosynthetic capacity and leaf properties of sun and shade leaves of overstorey sweetgum trees (Liquidambar styraciflua L.) were compared over the first 3 years of growth in ambient or ambient + 200 μL L?1 CO2 at the Duke Forest Free Air CO2 Enrichment (FACE) experiment. We were interested in whether photosynthetic down‐regulation to CO2 occurred in sweetgum trees growing in a forest ecosystem, whether shade leaves down‐regulated to a greater extent than sun leaves, and if there was a seasonal component to photosynthetic down‐regulation. During June and September of each year, we measured net photosynthesis (A) versus the calculated intercellular CO2 concentration (Ci) in situ and analysed these response curves using a biochemical model that described the limitations imposed by the amount and activity of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Vcmax) and by the rate of ribulose‐1,5‐bisphosphate (RuBP) regeneration mediated by electron transport (Jmax). There was no evidence of photosynthetic down‐regulation to CO2 in either sun or shade leaves of sweetgum trees over the 3 years of measurements. Elevated CO2 did not significantly affect Vcmax or Jmax. The ratio of Vcmax to Jmax was relatively constant, averaging 2·12, and was not affected by CO2 treatment, position in the canopy, or measurement period. Furthermore, CO2 enrichment did not affect leaf nitrogen per unit leaf area (Na), chlorophyll or total non‐structural carbohydrates of sun or shade leaves. We did, however, find a strong relationship between Na and the modelled components of photosynthetic capacity, Vcmax and Jmax. Our data over the first 3 years of this experiment corroborate observations that trees rooted in the ground may not exhibit symptoms of photosynthetic down‐regulation as quickly as tree seedlings growing in pots. There was a strong sustained enhancement of photosynthesis by CO2 enrichment whereby light‐saturated net photosynthesis of sun leaves was stimulated by 63% and light‐saturated net photosynthesis of shade leaves was stimulated by 48% when averaged over the 3 years. This study suggests that this CO2 enhancement of photosynthesis will be sustained in the Duke Forest FACE experiment as long as soil N availability keeps pace with photosynthetic and growth processes. 相似文献
6.
7.
The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies 总被引:8,自引:13,他引:8
Abstract. Only a small proportion of elevated CO2 studies on crops have taken place in the field. They generally confirm results obtained in controlled environments: CO2 increases photosynthesis, dry matter production and yield, substantially in C3 species, but less in C4 , it decreases stomatal conductance and transpiration in C3 and C4 species and greatly improves water-use efficiency in all plants. The increased productivity of crops with CO2 enrichment is also related to the greater leaf area produced. Stimulation of yield is due more to an increase in the number of yield-forming structures than in their size. There is little evidence of a consistent effect of CO2 on partitioning of dry matter between organs or on their chemical composition, except for tubers. Work has concentrated on a few crops (largely soybean) and more is needed on crops for which there are few data (e.g. rice). Field studies on the effects of elevated CO2 in combination with temperature, water and nutrition are essential; they should be related to the development and improvement of mechanistic crop models, and designed to test their predictions. 相似文献
8.
Laurel J. Anderson§ Hafiz Maherali† Hyrum B. Johnson‡ H. Wayne Polley‡ Robert B. Jackson¶ 《Global Change Biology》2001,7(6):693-707
Atmospheric CO2 (Ca) has risen dramatically since preglacial times and is projected to double in the next century. As part of a 4‐year study, we examined leaf gas exchange and photosynthetic acclimation in C3 and C4 plants using unique chambers that maintained a continuous Ca gradient from 200 to 550 µmol mol?1 in a natural grassland. Our goals were to characterize linear, nonlinear and threshold responses to increasing Ca from past to future Ca levels. Photosynthesis (A), stomatal conductance (gs), leaf water‐use efficiency (A/gs) and leaf N content were measured in three common species: Bothriochloa ischaemum, a C4 perennial grass, Bromus japonicus, a C3 annual grass, and Solanum dimidiatum, a C3 perennial forb. Assimilation responses to internal CO2 concentrations (A/Ci curves) and photosynthetically active radiation (A/PAR curves) were also assessed, and acclimation parameters estimated from these data. Photosynthesis increased linearly with Ca in all species (P < 0.05). S. dimidiatum and B. ischaemum had greater carboxylation rates for Rubisco and PEP carboxylase, respectively, at subambient than superambient Ca (P < 0.05). To our knowledge, this is the first published evidence of A up‐regulation at subambient Ca in the field. No species showed down‐regulation at superambient Ca. Stomatal conductance generally showed curvilinear decreases with Ca in the perennial species (P < 0.05), with steeper declines over subambient Ca than superambient, suggesting that plant water relations have already changed significantly with past Ca increases. Resource‐use efficiency (A/gs and A/leaf N) in all species increased linearly with Ca. As both C3 and C4 plants had significant responses in A, gs, A/gs and A/leaf N to Ca enrichment, future Ca increases in this grassland may not favour C3 species as much as originally thought. Non‐linear responses and acclimation to low Ca should be incorporated into mechanistic models to better predict the effects of past and present rising Ca on grassland ecosystems. 相似文献
9.
Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming 总被引:3,自引:0,他引:3
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1 ) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2 +↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction. 相似文献
10.
11.
Stomatal acclimation over a subambient to elevated CO2 gradient in a C3 /C4 grassland 总被引:1,自引:1,他引:1
H. Maherali C. D. Reid H. W. Polley H. B. Johnson & R. B. Jackson 《Plant, cell & environment》2002,25(4):557-566
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gs–Ci curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gs–Ci response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past. 相似文献
12.
13.
14.
Sensitivity of stomata and water use efficiency to high CO2 总被引:8,自引:9,他引:8
JAMES I. L. MORISON 《Plant, cell & environment》1985,8(6):467-474
Abstract The observed responses of stomata to carbon dioxide are reviewed, and the interaction of other known factors on the sensitivity to CO2 are summarized. The role of stomatal response to CO2 is discussed, and it is argued that while the effect of the CO2 response in normal daily stomatal behaviour is presently poorly understood the stomatal response to CO2 will have major impact in improving water use efficiency in future CO2 atmospheres. However, the attenuation of this increase is emphasized so that increases at the crop level will probably be much smaller than those observed at the single leaf assimilation level. 相似文献
15.
16.
Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks 总被引:1,自引:0,他引:1
Graham J.Hymus Tom G. Snead David P. Johnson Bruce A. Hungate Bert G. Drake 《Global Change Biology》2002,8(4):317-328
Abstract For two species of oak, we determined whether increasing atmospheric CO2 concentration (Ca) would decrease leaf mitochondrial respiration (R) directly, or indirectly owing to their growth in elevated Ca, or both. In particular, we tested whether acclimatory decreases in leaf‐Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current ambient + 350 µmol mol?1) Ca, in open‐top chambers (OTCs). For Q. myrtifolia, an increase in Ca from 360 to 710 µmol mol?1 had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated Ca—the only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N) concentration for the sun and shade leaves of both the species of oak. Acclimation of photosynthesis in elevated Ca significantly reduced maximum RuBP‐saturated carboxylation capacity (Vc max) for both the sun and shade leaves of only Q. geminata. However, we estimated that only 11–12% of total leaf N was invested in Rubisco; consequently, acclimation in this plant resulted in a small effect on N and an insignificant effect on R. In this study measurements of respiration and photosynthesis were made on material removed from the field; this procedure had no effect on gas exchange properties. The findings of this study were applicable to R expressed either per unit leaf area or unit dry weight, and did not support the hypothesis that elevated Ca decreases R directly, or indirectly owing to acclimatory decreases in Rubisco content. 相似文献
17.
18.
Plants grown at elevated pCO2 often fail to sustain the initial stimulation of net CO2 uptake rate (A). This reduced, acclimated, stimulation of A often occurs concomitantly with a reduction in the maximum carboxylation velocity (Vc,max) of Rubisco. To investigate this relationship we used the Farquhar model of C3 photosynthesis to predict the minimum Vc,max capable of supporting the acclimated stimulation in A observed at elevated pCO2. For a wide range of species grown at elevated pCO2 under contrasting conditions we found a strong correlation between observed and predicted values of Vc,max. This exercise mechanistically and quantitatively demonstrated that the observed acclimated stimulation of A and the simultaneous decrease in Vc,max observed at elevated pCO2 is mechanistically consistent. With the exception of plants grown at a high elevated pCO2 (> 90 Pa), which show evidence of an excess investment in Rubisco, the failure to maintain the initial stimulation of A is almost entirely attributable to the decrease in Vc,max and investment in Rubisco is coupled to requirements. 相似文献
19.
Free Air CO2 Enrichment of potato (Solanum tuberosum L.): development, growth and yield 总被引:1,自引:0,他引:1
F. Miglietta V. Magliulo † M. Bindi ‡ L. Cerio † F. P. Vaccari V. Loduca A. Peressotti§ 《Global Change Biology》1998,4(2):163-172
A FACE (Free Air CO2 Enrichment) experiment was carried out on Potato (Solanum tuberosum L., cv. Primura) in 1995 in Italy. Three FACE rings were used to fumigate circular field plots of 8 m diameter while two rings were used as controls at ambient CO2 concentrations. Four CO2 exposure levels were used in the rings (ambient, 460, 560 and 660 μmol mol–1). Phenology and crop development, canopy surface temperature, above- and below-ground biomass were monitored during the growing season. Crop phenology was affected by elevated CO2, as the date of flowering was progressively anticipated in the 660, 560, 460 μmol mol–1 treatments. Crop development was not affected significantly as plant height, leaf area and the number of leaves per plant were the same in the four treatments. Elevated atmospheric CO2 levels had, instead, a significant effect on the accumulation of total nonstructural carbohydrates (TNC = soluble sugars + starch) in the leaves during a sunny day. Specific leaf area was decreased under elevated CO2 with a response that paralleled that of TNC concentrations. This reflected the occurrence of a progressive increase of photosynthetic rates and carbon assimilation in plants exposed to increasingly higher levels of atmospheric CO2. Tuber growth and final tuber yield were also stimulated by rising CO2 levels. When calculated by regression of tuber yield vs. the imposed levels of CO2concentration, yield stimulation was as large as 10% every 100 μmol mol–1 increase, which translated into over 40% enhancement in yield under 660 μmol mol–1. This was related to a higher number of tubers rather than greater mean tuber mass or size. Leaf senescence was accelerated under elevated CO2 and a linear relationship was found between atmospheric CO2 levels and leaf reflectance measured at 0.55 μm wavelength. We conclude that significant CO2 stimulation of yield has to be expected for potato under future climate scenarios, and that crop phenology will be affected as well. 相似文献
20.
A. Noormets A. Sôber E. J. Pell R. E. Dickson G. K. Podila J. Sôber J. G. Isebrands & D. F. Karnosky 《Plant, cell & environment》2001,24(3):327-336
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes. 相似文献