首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clinical immunologists, among other problems, routinely face a question: what is the best time and dose for a certain therapeutic agent to be administered to the patient in order to decrease/eradicate the pathological condition? In cancer immunotherapies the therapeutic agent is something able to elicit an immune response against cancer. The immune response has its own dynamics that depends on the immunogenicity of the therapeutic agent and on the duration of the immune response. The question then is "how can we decide when and how much of the drug to inject so to have a prolonged and effective immune response to the cancer?". This question can be addressed in mathematical terms in two stages: first one construct a mathematical model describing the cancer-immune interaction and secondly one applies the theory of optimal control to determine when and to which extent to stimulate the immune system by means of an immunotherapeutic agent administered in discrete variable doses within the therapeutic period. The solution of this mathematical problem is described and discussed in this article. We show that the method employed can be applied to find the optimal protocol in a variety of clinical problems where the kinetics of the drug or treatment and its influence on the physiologic/pathologic functions have been described by a system of ordinary differential equations.  相似文献   

2.
3.
The interleukin-1 (IL-1) family is one of the first described cytokine families and consists of eight cytokines (IL-1β, IL-1α, IL-18, IL-33, IL-36α, IL-36β, IL-36γ and IL-37) and three receptor antagonists (IL-1Ra, IL-36Ra and IL-38). The family members are known to play an essential role in inflammation. The importance of inflammation in cancer has been well established in the past decades. This review sets out to give an overview of the role of each IL-1 family member in cancer pathogenesis and show their potential as potential anticancer drug candidates. First, the molecular structure is described. Next, both the pro- and anti-tumoral properties are highlighted. Additionally, a critical interpretation of current literature is given. To conclude, the IL-1 family is a toolbox with a collection of powerful tools that can be considered as potential drugs or drug targets.  相似文献   

4.
In this paper we develop a new mathematical model of immunotherapy and cancer vaccination, focusing on the role of antigen presentation and co-stimulatory signaling pathways in cancer immunology. We investigate the effect of different cancer vaccination protocols on the well-documented phenomena of cancer dormancy and recurrence, and we provide a possible explanation of why adoptive (i.e. passive) immunotherapy protocols can sometimes actually promote tumour growth instead of inhibiting it (a phenomenon called immunostimulation), as opposed to active vaccination protocols based on tumour-antigen pulsed dendritic cells. Significantly, the results of our computational simulations suggest that elevated numbers of professional antigen presenting cells correlate well with prolonged time periods of cancer dormancy.  相似文献   

5.
Successful treatment of cancer patients with a combination of monoclonal antibodies (mAb) and chemotherapeutic drugs has spawned various other forms of additional combination therapies, including vaccines or adoptive lymphocyte transfer combined with chemotherapeutics. These therapies were effective against established tumors in animal models and showed promising results in initial clinical trials in cancer patients, awaiting testing in larger randomized controlled studies. Although combination between immunotherapy and chemotherapy has long been viewed as incompatible as chemotherapy, especially in high doses meant to increase anti-tumor efficacy, has induced immunosuppression, various mechanisms may explain the reported synergistic effects of the two types of therapies. Thus direct effects of chemotherapy on tumor or host environment, such as induction of tumor cell death, elimination of regulatory T cells, and/or enhancement of tumor cell sensitivity to lysis by CTL may account for enhancement of immunotherapy by chemotherapy. Furthermore, induction of lymphopenia by chemotherapy has increased the efficacy of adoptive lymphocyte transfer in cancer patients. On the other hand, immunotherapy may directly modulate the tumor’s sensitivity to chemotherapy. Thus, anti-tumor mAb can increase the sensitivity of tumor cells to chemotherapeutic drugs and patients treated first with immunotherapy followed by chemotherapy showed higher clinical response rates than patients that had received chemotherapy alone. In conclusion, combination of active specific immunotherapy or adoptive mAb or lymphocyte immunotherapy with chemotherapy has great potential for the treatment of cancer patients which needs to be confirmed in larger controlled and randomized Phase III trials.  相似文献   

6.
Engineered proteins are revolutionizing immunotherapy, but advances are still needed to harness their full potential. Traditional protein engineering methods use naturally existing proteins as a starting point, and therefore, are intrinsically limited to small alterations of a protein's natural structure and function. Conversely, computational de novo protein design is free of such limitation, and can produce a virtually infinite number of novel protein sequences, folds, and functions. Recently, we used de novo protein engineering to create Neoleukin-2/15 (Neo-2/15), a protein mimetic of the function of both interleukin-2 (IL-2) and interleukin-15 (IL-15). To our knowledge, Neo-2/15 is the first de novo protein with immunotherapeutic activity, and in murine cancer models, it has demonstrated enhanced therapeutic potency and reduced toxicity compared to IL-2. De novo protein design is already showcasing its tremendous potential for driving the next wave of protein-based therapeutics that are explicitly engineered to treat disease.  相似文献   

7.
DNA mismatch repair (MMR) is an important pathway which helps to maintain genomic stability. Mutations in DNA MMR genes are found to promote cancer initiation and foster tumor progression. Deficiency or inactivation of MMR results in microsatellite instability (MSI) which triggers neoantigen generation and impairs tumor growth. Immunotherapies targeting MMR can increase the burden of neoantigens in tumor cells. While MSI has been regarded as an important predictor of sensitivity and drug resistance for immunotherapy-based strategies. Different approaches targeting genomic instability have been demonstrated to be promising in malignancies derived from different tissues. Underlying MMR deficiency-associated immunogenicity is important for improving the therapeutic efficacy of immunotherapies. In this review we provide an overview of the MMR systems, their role in tumorigenesis, drug resistance, prognostic significance and potential targets for therapeutic treatment in human cancers, especially in hematological malignancies.  相似文献   

8.
MYCN is a potential target for cancer immunotherapy by virtue of its overexpression in numerous human malignancies and its functional role in tumour progression. Here we show limited expression of MYCN in normal human tissues indicating that anti-MYCN immune responses are unlikely to cross react with self tissues. An HLA-A2 restricted ten amino acid peptide epitope from MYCN, VILKKATEYV, was used to stimulate cytotoxic T cell lines from the peripheral blood of normal blood donors, and from a patient with MYCN amplified neuroblastoma. Strong and specific activity was seen against each MYCN overexpressing cell line and against autologous tumour cells. We generated two CTL clones capable of killing cells pulsed with as low as 0.5 nM of VIL peptide. Therefore strong and specific immune responses against MYCN expressing tumours are possible in patients with the most common HLA class 1 type in the Caucasian population.  相似文献   

9.
Human Papillomavirus (HPV) remains one of the most commonly contracted sexually transmitted diseases around the world. There are a multitude of HPV types, some of which may never present any symptoms. Others, however, are considered high-risk types, which increase the chance of the person infected to develop cancer. In recent years, the utilization of nanotechnology has allowed researchers to employ and explore the use of nanoparticles in immunotherapies.The new nanoparticle frontier has opened many doors in this area of research as a form of prevention, diagnosis, and treatment in cancers resulting from HPV. This review will provide a brief background of HPV, its relationship to head and neck cancer (HNC) and present some insight into the field of immunotherapeutic nanoparticles.  相似文献   

10.
Immunotherapy treatments harnessing the immune system herald a new era of personalized medicine, offering considerable benefits for cancer patients. Over the past years, tumor neoantigens emerged as a rising star in immunotherapy. Neoantigens are tumor-specific antigens arising from somatic mutations, which are proceeded and presented by the major histocompatibility complex on the cell surface. With the advancement of sequencing technology and bioinformatics engineering, the recognition of neoantigens has accelerated and is expected to be incorporated into the clinical routine. Currently, tumor vaccines against neoantigens mainly encompass peptides, DNA, RNA, and dendritic cells, which are extremely specific to individual patients. Due to the high immunogenicity of neoantigens, tumor vaccines could activate and expand antigen-specific CD4+ and CD8+ T cells to intensify anti-tumor immunity. Herein, we introduce the origin and prediction of neoantigens and compare the advantages and disadvantages of multiple types of neoantigen vaccines. Besides, we review the immunizations and the current clinical research status in neoantigen vaccines, and outline strategies for enhancing the efficacy of neoantigen vaccines. Finally, we present the challenges facing the application of neoantigens.  相似文献   

11.
Cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) plays a key role in restraining the adaptive immune response of T-cells towards a variety of antigens including tumor associated antigens (TAAs). The blockade of this immune checkpoint elicits an effective anticancer immune response in a range of preclinical models, suggesting that naturally occurring (or therapeutically induced) TAA specific lymphocytes need to be “unleashed” in order to properly fight against malignant cells. Therefore, investigators have tested this therapeutic hypothesis also in humans: the favorable results obtained with this strategy in patients with advanced cutaneous melanoma are revolutionizing the management of this highly aggressive disease and are fueling new enthusiasm on cancer immunotherapy in general.  相似文献   

12.
Insights into the molecular basis for natural killer (NK) cell recognition of human cancer have been obtained in recent years. Here, we review current knowledge on the molecular specificity and function of human NK cells. Evidence for NK cell targeting of human tumors is provided and new strategies for NK cell-based immunotherapy against human cancer are discussed. Based on current knowledge, we foresee a development where more cancers may be subject to treatment with drugs or other immunomodulatory agents affecting NK cells, either directly or indirectly. We also envisage a possibility that certain forms of cancers may be subject to treatment with adoptively transferred NK cells, either alone or in combination with other therapeutic interventions.  相似文献   

13.
Experimental vaccine strategies for cancer immunotherapy   总被引:10,自引:0,他引:10  
Recently, cancer immunotherapy has emerged as a therapeutic option for the management of cancer patients. This is based on the fact that our immune system, once activated, is capable of developing specific immunity against neoplastic but not normal cells. Increasing evidence suggests that cell-mediated immunity, particularly T-cell-mediated immunity, is important for the control of tumor cells. Several experimental vaccine strategies have been developed to enhance cell-mediated immunity against tumors. Some of these tumor vaccines have generated promising results in murine tumor systems. In addition, several phase I/II clinical trials using these vaccine strategies have shown extremely encouraging results in patients. In this review, we will discuss many of these promising cancer vaccine strategies. We will pay particular attention to the strategies employing dendritic cells, the central player for tumor vaccine development.  相似文献   

14.
The treatment of cancer has made great progress. However, drug resistance remains problematic. Multiple physiologic processes of tumor development can be dominated by central and sympathetic nervous systems. The interactions between the nervous system, immune system, and tumor occur consistently and dynamically. Recent evidence suggests that nerves and neural signals are intimately involved in the development of resistance to cancer therapies. In this review, we will provide an overview of the recent progress in this rapidly growing area and discuss the potential new strategies for targeting the neural signaling pathway to improve the effectiveness of chemotherapies, targeted therapies, and immunotherapies.  相似文献   

15.
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.  相似文献   

16.
T regulatory cells are able to suppress anti-tumour immunity in pre-clinical models and in patients. This review highlights the important discoveries in Treg immunology critical to the evolution of targeted immunotherapy. We also describe the therapeutic applications that are currently being assessed and their future potential.  相似文献   

17.
Accumulating evidence points to the impact of the gut microbiota in regulating various chronic inflammatory disorders such as cancers. The intestinal microbiome is not only influencing the spontaneous course of colon malignancies but also acts at distant sterile sites of neoplasia, mostly playing a detrimental role. By providing microbial-associated molecular patterns and potentially antigens sharing molecular mimicry with tumor antigens, our commensals modulate the local and the systemic immune tonus, eventually influencing tumor microenvironment. Complicating this algorithm, therapeutic interventions alter the delicate balance between the epithelium, the microbial community, and the intestinal immunity, governing the final clinical outcome. This seminar focused on the impact of the intestinal composition on the immunomodulatory and therapeutic activities of distinct compounds (alkylating agents, platinum salts and immunotherapies) used in oncology. This research opens up “the era of anticancer probiotics” aimed at restoring gut eubiosis for a better clinical outcome in cancer patients.  相似文献   

18.
19.
The development of cancer vaccines has been one of the several false dawns in which initial promising Phase I and Phase II clinical data have not been followed up with conclusive Phase III trials. In this review, we describe some of the successes and failures, and review the most likely reasons for Phase III failure, such as protocol changes, which are common between Phase II and III, and poorly defined patient groups. Nevertheless, significant survival results have been reported with autologous vaccines for colorectal, renal and, more recently, prostate cancer. In addition, it is becoming evident that immunotherapy is potentially synergistic with other treatment modalities, such as chemotherapy, which can reduce T-regulatory activity that inhibits the immune response to cancer vaccines. This potential for synergy should allow cancer vaccines to become part of the standard treatment regimen for many common tumours.This article is a symposium paper from the “Robert Baldwin Symposium: 50 years of Cancer Immunotherapy”, held in Nottingham, Great Britain, on 30 June 2005.  相似文献   

20.
Li X  Yu J  Xu S  Wang N  Yang H  Yan Z  Cheng G  Liu G 《Glycoconjugate journal》2008,25(5):415-425
Paclitaxel (Taxol) conjugated to muramyl dipeptide (MDP) is described. Biological testing showed that the conjugation of MDP at 2'-O-paclitaxel (2'- O -MTC-01) not only has antitumor activity, but also have immunoenhancement capacity. Compared with paclitaxel or MDP alone or with a mixture of paclitaxel + MDP, 2'- O -MTC-01 significantly increases the production and expression of TNF-alpha and IL-12 from mouse peritoneal macrophages, which demonstrates a synergism of MDP and paclitaxel in one conjugated molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号