首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prerequisite for topographical studies on ribosomal subunits involving RNA-protein cross-linking is that the cross-linking sites on the RNA should be determined. Methodology is presented which offers a solution to this problem, using as a test system 30S subunits in which protein S7 has been cross-linked to the 16S RNA by ultraviolet irradiation. The method is based on a gel separation system in the presence of a non-ionic detergent. When a ribonucleoprotein fragment containing RNA-protein cross-links is applied to this system, non-cross-linked protein is removed, and simultaneously the cross-linked RNA-protein complex is separated from non-cross-linked RNA. Oligonucleotide analysis of the S7-RNA complex isolated in this manner showed it to consist of a region of RNA from sections P-A of the 16S RNA. A single characteristic oligonucleotide was absent from this region, and it was tentatively concluded that this missing oligonucleotide contains the actual site of cross-linking.  相似文献   

2.
3.
Poly(A) can be cross-linked to E. coli 70S ribosomes in the presence of tRNALys by mild ultraviolet irradiation. The cross-linking reaction is exclusively with the 30S subunit, and involves primarily the RNA moiety. Following a partial nuclease digestion, cross-linked complexes containing poly(A) and fragments of the 16S RNA were isolated by affinity chromatography on oligo(dT)-cellulose. The complexes were purified by gel electrophoresis and subjected to oligonucleotide analysis, which revealed a single cross-link site within positions 1394-1399 of the 16S RNA. The same pattern of cross-linking, at about one-fifth of the intensity, was observed in the absence of tRNALys. The cross-link site to poly(A), together with other sites in the 16S RNA that have been implicated in ribosomal function, is discussed in the framework of our recent model for the three-dimensional structure of 16S RNA; all of the functional sites are clustered together in two distinct groups in the model.  相似文献   

4.
RNA-protein cross-links were introduced into E. coli 30S ribosomal subunits by treatment with methyl p-azidophenyl acetimidate. After partial nuclease digestion of the RNA moiety, a number of cross-linked RNA-protein complexes were isolated by a new three-step procedure. Protein and RNA analysis of the individual complexes gave the following results: Proteins S3, S4, S5 and S8 are cross-linked to the 5'-terminal tetranucleotide of 16S RNA. S5 is also cross-linked to the 16S RNA within an oligonucleotide encompassing positions 559-561. Proteins S11, S9, S19 and S7 are cross-linked to 16S RNA within oligonucleotides encompassing positions 702-705, 1130-1131, 1223-1231 and 1238-1240, respectively. Protein S13 is cross-linked to an oligonucleotide encompassing positions 1337-1338, and is also involved in an anomalous cross-link within positions 189-191. Protein S21 is cross-linked to the 3'-terminal dodecanucleotide of the 16S RNA.  相似文献   

5.
Treatment of E. coli ribosomal subunits with 2-iminothiolane coupled with mild ultraviolet irradiation leads to the formation of a large number of RNA-protein cross-links. In the case of the 30S subunit, a number of sites on 16S RNA that are cross-linked to proteins S7 and S8 by this procedure have already been identified (see ref. 6). Here, by using new or modified techniques for the partial digestion of the RNA and the subsequent isolation of the cross-linked RNA-protein complexes, three new iminothiolane cross-links have been localized: Protein S17 is cross-linked to the 16S RNA within an oligonucleotide encompassing positions 629-633, and protein S21 is cross-linked to two sites within oligonucleotides encompassing positions 723-724 and positions 1531-1542 (the 3'-end of the 16S RNA).  相似文献   

6.
When E. coli ribosomal subunits are reacted with 2-iminothiolane and then subjected to a mild ultraviolet irradiation, an RNA-protein cross-linking reaction occurs. About 5% of the total protein in each subunit becomes cross-linked to the RNA, and a specific sub-set of proteins is involved in the reaction. In the case of the 50S subunit, the sites of cross-linking to the 23S RNA have been determined for six of these proteins: protein L4 is cross-linked within an oligonucleotide comprising positions 613-617 in the 23S sequence, L6 within positions 2473-2481, L21 within positions 540-548, L23 within positions 137-141, L27 within positions 2332-2337 and L29 within positions 99-107.  相似文献   

7.
8.
The efficiency and specificity of RNA-protein cross-linking in the 30S subunit of Escherichia coli ribosomes, induced by low-intensity (10(15) photons cm-2 s-1, 254 nm) and high-intensity [(1.6-6.8) X 10(24) photons cm-2 s-1, 266 nm, pulse duration 10(-8) s] ultraviolet radiation, are studied. Under the former conditions proteins S4, S7 and S9/S11, and under the latter conditions these proteins together with S3, S18 and S20, are cross-linked to 16S RNA. Biphotonic processes operate in the latter case. In the presence of 2-mercaptoethanol cross-linking occurs either directly, via a higher excited state or via activated intermediates with life-times less than 25 ns. Cross-links thus formed are specific, i.e. they are formed between regions of macromolecules which are in contact in the native (non-disturbed) complex prior to excitation. The efficiency of cross-linking (per photon absorbed) is 20-100 times higher upon two-step excitation as compared with single-step excitation and an analysable number of cross-links are produced in a single pulse. Only base U-1239 of 16S RNA is cross-linked to protein S7 by low-intensity radiation, whereas the adjacent base, G-1240 is also involved in laser-induced cross-linking. A transition from the former to the latter conditions allows one to reduce the duration of irradiation from several minutes to several nanoseconds.  相似文献   

9.
RNA-protein cross-links were introduced into E. coli 30S ribosomal subunits by reaction with 2-iminothiolane followed by a mild ultraviolet irradiation treatment. After removal of non-reacted protein and partial nuclease digestion of the cross-linked 16S RNA-protein moiety, a number of individual cross-linked complexes could be isolated and the sites of attachment of the proteins to the RNA determined. Protein S8 was cross-linked to the RNA at three different positions, within oligo-nucleotides encompassing positions 629-633, 651-654, and (tentatively) 593-597 in the 16S sequence. Protein S7 was cross-linked within two oligonucleotides encompassing positions 1238-1240, and 1377-1378. In addition, a site at position 723-724 was observed, cross-linked to protein S19, S20 or S21.  相似文献   

10.
Cross-linking of streptomycin to the 16S ribosomal RNA of Escherichia coli   总被引:6,自引:0,他引:6  
[3H]Dihydrostreptomycin was cross-linked to the 30S ribosomal subunit from Escherichia coli with the bifunctional reagent nitrogen mustard. The cross-linking primarily involved the 16S RNA. To localize the site of cross-linking of streptomycin to the 16S RNA, we hybridized RNA labeled with streptomycin to restriction fragments of the 16S RNA gene. Labeled RNA hybridized to DNA fragments corresponding to bases 892-917 and bases 1394-1415. These two segments of the ribosomal RNA must be juxtaposed in the ribosome, since there is a single binding site for streptomycin. This region has been implicated both in the decoding site and in the binding of initiation factor IF-3, indicating its functional importance.  相似文献   

11.
70S ribosomes from E. coli were chemically cross-linked under conditions of in vitro protein biosynthesis. The ribosomal RNAs were extracted from reacted ribosomes and separated on sucrose gradients. The 5S RNA was shown to contain the ribosomal protein L25 covalently bound. After total RNase T1 hydrolysis of the covalent RNA-protein complex several high molecular weight RNA fragments were obtained and identified by sequencing. One fragment, sequence region U103 to U120, was shown to be directly linked to the protein first by protein specific staining of the particular fragment and second by phosphor cellulose chromatography of the covalent RNA-protein complex. The other two fragments, U89 to G106 and A34 to G51, could not be shown to be directly linked to L25 but were only formed under cross-linking conditions. While the fragment U89 to G106 may be protected from RNase T1 digestion because of a strong interaction with the covalent RNA-protein complex, the formation of the fragment A34 to G51 is very likely the result of a double monovalent modification of two neighbouring guanosines in the 5S RNA. The RNA sequences U103 to U120 established to be in direct contact to the protein L25 within the ribosome falls into the sequence region previously proposed as L25 binding site from studies with isolated 5S RNA-protein complexes.  相似文献   

12.
The structure of human 40S ribosomal subunits has been probed by a cross-linking strategy based on the use of oligonucleotide derivatives that modify proteins in the vicinity of specific 18S rRNA sequences. The oligonucleotide derivatives carried a p-azidoperfluorobenzamide group at the 5' ends and were complementary to 18S rRNA sequences 609-618 and 1047-1061, homologous to the highly conserved regions designated as the "530 stem-loop" and "790 stem-loop", respectively, in Escherichia coli 16S rRNA. Ribosomal proteins surrounding these sequences were the main targets of the cross-linking. Proteins S3 and S5 were cross-linked to the derivative complementary to the sequence 609-618, and proteins S2 and S3 were modified by the derivative complementary to the sequence 1047-1061. Cross-linking was not affected by binding of 40S subunits to either poly(U) or poly(U) and Phe-tRNA(Phe).  相似文献   

13.
RNA-protein cross-links were introduced into E. coli 30S ribosomal subunits by treatment with bis-(2-chloroethyl)-methylamine. After partial nuclease digestion of the RNA moiety, a number of cross-linked RNA-protein complexes were isolated by a new three-step procedure. Protein and RNA analysis of the individual complexes gave the following results: proteins S4 and S9 are cross-linked to the 16S RNA at positions 413 and 954, respectively. Proteins S11 and S21 are both cross-linked to the RNA within an oligonucleotide encompassing positions 693-697, and proteins S17, S10, S3 and S7 are cross-linked within oligonucleotides encompassing positions 278-280, 1139-1144, 1155-1158, and 1531-1542, respectively. A cross-link to protein S18 was found by a process of elimination to lie between positions 845 and 851.  相似文献   

14.
When Escherichia coli 30-S ribosomal subunits are hydrolysed under mild conditions, two ribonucleoprotein fragments of unequal size are produced. Knowledge of the RNA sequences contained in these hydrolysis products was required for the experiments described in the preceding paper, and the RNA sub-fragments have therefore been examined by oligonucleotide analysis. Two well-defined small fragments of free RNA, produced concomitantly with the ribonucleoprotein fragments, were also analysed. The larger ribonucleoprotein fragment, containing predominantly proteins S4, S5, S8, S15, S16 (17) and S20, contains a complex mixture of RNA sub-fragments varying from about 100 to 800 nucleotides in length. All these fragments arose from the 5'-terminal 900 nucleotides of 16-S RNA, corresponding to the well-known 12-S fragment. No long-range interactions could be detected within this RNA region in these experiments. The RNA from the smaller ribonucleoprotein fragment (containing proteins S7, S9 S10, S14 and S19) has been described in detail previously, and consists of about 450 nucleotides near the 3' end of the 16-S RNA, but lacking the 3'-terminal 150 nucleotides. The two small free RNA fragments (above) partly account for these missing 150 nucleotides; both fragments arose from section A of the 16-S RNA, but section J (the 3'-terminal 50 nucleotides) was not found. This result suggests that the 3' region of 16-S RNA is not involved in stable interactions with protein.  相似文献   

15.
We have investigated protein-rRNA cross-links formed in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus at the molecular level using UV and 2-iminothiolane as cross-linking agents. We identified amino acids cross-linked to rRNA for 13 ribosomal proteins from these organisms, namely derived from S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29 and L36. Several other peptide stretches cross-linked to rRNA have been sequenced in which no direct cross-linked amino acid could be detected. The cross-linked amino acids are positioned within loop domains carrying RNA binding features such as conserved basic and aromatic residues. One of the cross-linked peptides in ribosomal protein S3 shows a common primary sequence motif--the KH motif--directly involved in interaction with rRNA, and the cross-linked amino acid in ribosomal protein L36 lies within the zinc finger-like motif of this protein. The cross-linked amino acids in ribosomal proteins S17 and L6 prove the proposed RNA interacting site derived from three-dimensional models. A comparison of our structural data with mutations in ribosomal proteins that lead to antibiotic resistance, and with those from protein-antibiotic cross-linking experiments, reveals functional implications for ribosomal proteins that interact with rRNA.  相似文献   

16.
RNA-protein cross-links were introduced into E. coli 50S ribosomal subunits by treatment with 2-iminothiolane followed by mild ultraviolet irradiation. After partial digestion of the RNA, the cross-linked RNA-protein complexes were separated by our recently published three-step procedure. In cases where this separation was inadequate, a further purification step was introduced, involving affinity chromatography with antibodies to the ribosomal 50S proteins. Analysis of the isolated complexes enabled four new cross-link sites on the 23S RNA to be identified, as well as re-confirming several previously established sites. The new sites are as follows: Protein L2 is cross-linked within an oligonucleotide at positions 1818-1823 in the 23S RNA, protein L4 within positions 320-325, protein L24 within positions 99-107, and protein L27 within positions 2320-2323.  相似文献   

17.
18.
RNA-protein cross-links were introduced into Escherichia coli 30S subunits by treatment with 1-ethyl-3(3-dimethylaminopropyl)carbodiimide. 16S rRNA, cross-linked to 30S ribosomal proteins, was isolated and hybridized with seven single-stranded bacteriophage M13-DNA probes. These probes, each carrying an inserted rDNA fragment, were used to select contiguous RNA sections covering domains 3 and 4 (starting at nucleotide 868 and ending at the 3'OH terminus) of the 16S rRNA. The proteins covalently linked to each selected RNA section were identified by two-dimensional polyacrylamide gel electrophoresis. Proteins S7 and S9 were shown to be efficiently cross-linked to multiple sites belonging to both domains.  相似文献   

19.
J Ciesiolka  K Nurse  J Klein  J Ofengand 《Biochemistry》1985,24(13):3233-3239
The complex of Artemia salina ribosomes and Escherichia coli acetylvalyl-tRNA could be cross-linked by irradiation with near-UV light. Cross-linking required the presence of the codon GUU, GUA being ineffective. The acetylvalyl group could be released from the cross-linked tRNA by treatment with puromycin, demonstrating that cross-linking had occurred at the P site. This was true both for pGUU- and also for poly(U2,G)-dependent cross-linking. All of the cross-linking was to the 18S rRNA of the small ribosomal subunit. Photolysis of the cross-link at 254 nm occurred with the same kinetics as that for the known cyclobutane dimer between this tRNA and Escherichia coli 16S rRNA. T1 RNase digestion of the cross-linked tRNA yielded an oligonucleotide larger in molecular weight than any from un-cross-linked rRNA or tRNA or from a prephotolyzed complex. Extended electrophoresis showed this material to consist of two oligomers of similar mobility, a faster one-third component and a slower two-thirds component. Each oligomer yielded two components on 254-nm photolysis. The slower band from each was the tRNA T1 oligomer CACCUCCCUVACAAGp, which includes the anticodon. The faster band was the rRNA 9-mer UACACACCGp and its derivative UACACACUG. Unexpectedly, the dephosphorylated and slower moving 9-mer was derived from the faster moving dimer. Deamination of the penultimate C to U is probably due to cyclobutane dimer formation and was evidence for that nucleotide being the site of cross-linking. Direct confirmation of the cross-linking site was obtained by "Z"-gel analysis [Ehresmann, C., & Ofengand, J. (1984) Biochemistry 23, 438-445].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The nucleotide residues involved in the cross-link between P site bound acetylvalyl-tRNA (AcVal-tRNA) and 16-18S rRNA have been identified. This cross-link was formed by irradiation of Escherichia coli or Bacillus subtilis AcVal-tRNA bound to the P site of E. coli ribosomes or by irradiation of E. coli AcVal-tRNA bound to the P site of yeast ribosomes. The three cross-linked RNA heterodimers were obtained in 10-35% purity by disruption of the irradiated ribosome-tRNA complex with sodium dodecyl sulfate followed by sucrose gradient centrifugation. After total digestion with RNase T1, and labeling at either the 5'- or the 3'-end, the cross-linked oligomers could be identified and isolated before and after photolytic splitting of the cross-link. One of the oligomers was shown to be UACACACCG, a unique rRNA nonamer present in an evolutionarily conserved region. This oligomer was found in all three heterodimers. The other oligomer of the dimer had the sequence expected for the RNase T1 product encompassing the anticodon of the tRNA used. The precise site of cross-linking was determined by two novel methods. Bisulfite modification of the oligonucleotide dimer converted all C residues to U, except for any cross-linked C which would be resistant by being part of a cyclobutane dimer. Sequencing gel analysis of the UACACACCG oligomer showed that the C residue protected was the 3'-penultimate C residue, C1400 in E. coli rRNA or C1626 in yeast rRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号