首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To verify whether the sleep-inducing properties of oleamide were related to its ability to perturb membrane homeoviscosity, affecting 5-HT(2A) receptors, we compared the effects of oleamide and oleic acid, the latter lacking both the sleep-inducing effect and the action on 5-HT(2A) receptors. In binding studies the two compounds did not directly interact with rat brain cortex 5-HT(2A) receptors, nor did they increase the affinity of a 5-HT(2A) agonist, either in vitro or ex vivo. They had similar fluidizing effects, in vitro at high concentrations (>/=10 microM), and ex vivo after a dose of 100 mg/kg, and they reduced locomotor activity with similar potency. There thus appears to be no causal relationship between the fluidizing effects of oleamide and its sleep-inducing properties.  相似文献   

2.
We examined c-fos expression in specific brain nuclei in response to gastric distension and investigated whether 5-HT released from enterochromaffin (EC) cells was involved in this response. The role of 5-HT3 receptors in this mechanism was also addressed. Release of 5-HT was examined in an ex vivo-perfused stomach model, whereas c-fos expression in brain nuclei induced by gastric distension was examined in a freely moving conscious rat model. Physiological levels of gastric distension stimulated the vascular release of 5-HT more than luminal release of 5-HT, and induced c-fos expression in the nucleus of the solitary tract (NTS), area postrema (AP), paraventricular nucleus (PVN), and supraoptic nucleus (SON). The c-fos expression in all these brain nuclei was blocked by truncal vagotomy as well as by perivagal capsaicin treatment, suggesting that vagal afferent pathways may mediate this response. Intravenous injection of 5-HT3 receptor antagonist granisetron blocked c-fos expression in all brain nuclei examined, although intracerebroventricular injection of granisetron had no effect, suggesting that 5-HT released from the stomach may activate 5-HT3 receptors located in the peripheral vagal afferent nerve terminals and then induce brain c-fos expression. c-fos Positive cells in the NTS were labeled with retrograde tracer fluorogold injected in the PVN, suggesting that neurons in the NTS activated by gastric distension project axons to the PVN. The present results suggest that gastric distension stimulates 5-HT release from the EC cells and the released 5-HT may activate 5-HT3 receptors located on the vagal afferent nerve terminals in the gastric wall leading to neuron activation in the NTS and AP and subsequent activation of neurons in the PVN and SON.  相似文献   

3.
4.
Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in rat brain were analysed 24 hours after 7-, 15-, 29- days lithium hydroxybutyrate (LH) injections (10 mg/kg daily). After 7 days the drug reduced 5-HT in hypothalamus and 5-HIAA in the mid brain by 35%. After 15 days LH decreased 5-HT in striatum, hypothalamus by 32 and 17% and 5-HIAA in thalamus, hypothalamus by 28 and 44% respectively. After 29 days LH diminished 5-HT in striatum, hippocampus, amygdala by 24, 29 and 32% and 5-HIAA--in hypothalamus by 42%. The role of adaptative changes and stabilization processes in the central serotoninergic system in mechanism of LH psychotropic effects is discussed.  相似文献   

5.
Early life stress has been implicated as a risk factor for irritable bowel syndrome (IBS). We studied the effect of neonatal maternal separation on the visceromotor response and the expression of c-fos, 5-HT, and its receptors/transporters along the brain-gut axis in an animal model of IBS. Male neonatal Sprague-Dawley rats were randomly assigned to a 3-h daily maternal separation (MS) or nonhandling (NH) on postnatal days 2-21. Colorectal balloon distention (CRD) was performed for assessment of abdominal withdrawal reflex as a surrogate marker of visceral pain. Tissues from dorsal raphe nucleus in midbrain, lumbar-sacral cord, and distal colon were harvested for semiquantitative analysis of c-fos and 5-HT. The expression of 5-HT expression, 5-HT3 receptors, and 5-HT transporter were analyzed by RT-PCR. Pain threshold was significantly lower in MS than NH rats. The abdominal withdrawal reflex score in response to CRD in MS rats was significantly higher with distension pressures of 40, 60, and 80 mmHg. In MS rats, the number of c-fos-like immunoreactive nuclei at dorsal horn of lumbar-sacral spinal cord increased significantly after CRD. 5-HT content in the spinal cord of MS rats was significant higher. In the colon, both 5-HT-positive cell number and 5-HT content were comparable between MS and NH groups before CRD. Post-CRD only MS rats had significant increase in 5-HT content. Protein and mRNA expression levels of 5-HT3 receptors and 5-HT transporter were similar in MS and NH rats. Neonatal maternal separation stress predisposes rats to exaggerated neurochemical responses and visceral hyperalgesia in colon mimicking IBS.  相似文献   

6.
Serotonin 5-HT(3) antagonists have been suggested for treatment of several disorders involving altered gastrointestinal (GI) function. CCK also has well documented GI actions on both food intake and vago-vagal reflexes. To evaluate potential interactions, the effect of a 5-HT(3) antagonist, ondansetron, on exogenous CCK induced satiety and c-fos activation was determined. Ondansetron reduced both actions of CCK by approximately 50%. The reduction in c-fos was localized to a specific subregion of the dorsal medulla, suggesting that a distinct subpopulation of CCK receptive fibers are modulated by 5-HT(3) ligands. Treatments using 5-HT(3) antagonists also may affect endogenous CCK functions.  相似文献   

7.
Oleamide (cis-9-octadecenamide) is a member of an emerging class of lipid-signaling molecules, the primary fatty acid amides. A growing body of evidence indicates that oleamide mediates fundamental neurochemical processes including sleep, thermoregulation, and nociception. Nevertheless, the mechanism for oleamide biosynthesis remains unknown. The leading hypothesis holds that oleamide is synthesized from oleoylglycine via the actions of the peptide amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The present study investigated this hypothesis using pharmacologic treatments, physiologic assessments, and measurements of serum oleamide levels using a newly developed enzyme-linked immunosorbant assay (ELISA). Oleamide and oleoylglycine both induced profound hypothermia and decreased locomotion, over equivalent dose ranges and time courses, whereas, closely related compounds, stearamide and oleic acid, were essentially without effect. While the biologic actions of oleamide and oleoylglycine were equivalent, the two compounds differed dramatically with respect to their effects on serum levels of oleamide. Oleamide administration (80 mg/kg) elevated blood-borne oleamide by eight-fold, whereas, the same dose of oleoylglycine had no effect on circulating oleamide levels. In addition, pretreatment with the established PAM inhibitor, disulfiram, produced modest reductions in the hypothermic responses to both oleoylglycine and oleamide, suggesting that the effects of disulfiram were not mediated through inhibition of PAM and a resulting decrease in the formation of oleamide from oleoylglycine. Collectively, these findings raise the possibilities that: (1) oleoylglycine possesses biologic activity that is independent of its conversion to oleamide and (2) the increased availability of oleoylglycine as a potential substrate does not drive the biosynthesis of oleamide.  相似文献   

8.
5-HT receptor changes remain controversial in posttraumatic stress disorder (PTSD) models. This study looks at the relationship between traumatic injuries and the alterations in 5-HT(2A) and 5-HT(2C) receptors in the goldfish brain. The effect of treatment with doxepin and fluoxetine, known to be selective serotonin reuptake inhibitor (SSRI) antidepressants, on 5-HT receptor expression in goldfish with fin ablation was also investigated. We demonstrated that fin ablation induced anxiety-like behavioural alterations and significant up-regulation of c-fos expression in goldfish cerebellum. The behavioural alterations correlated well with an increased expression of 5-HT(2A) receptors in the cerebellum of the fish with traumatic injury. An increase in the number of apoptotic cells and a higher caspase-8 protein level was present in the brains of goldfish with fin ablation compared to the control. Our findings suggest that neuronal apoptosis occured in the cerebellum as a result of fin ablation and may be related to the alterations of 5-HT(2A) and 5-HT(2C) levels and that the beneficial clinical effects of doxepin/fluoxetine treatment are due to the down-regulation of 5-HT(2A) and up-regulation of 5-HT(2C) receptors in the brain.  相似文献   

9.
Oleamide (cis-9-octadecenamide) is a member of an emerging class of lipid-signaling molecules, the primary fatty acid amides. A growing body of evidence indicates that oleamide mediates fundamental neurochemical processes including sleep, thermoregulation, and nociception. Nevertheless, the mechanism for oleamide biosynthesis remains unknown. The leading hypothesis holds that oleamide is synthesized from oleoylglycine via the actions of the peptide amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The present study investigated this hypothesis using pharmacologic treatments, physiologic assessments, and measurements of serum oleamide levels using a newly developed enzyme-linked immunosorbant assay (ELISA). Oleamide and oleoylglycine both induced profound hypothermia and decreased locomotion, over equivalent dose ranges and time courses, whereas, closely related compounds, stearamide and oleic acid, were essentially without effect. While the biologic actions of oleamide and oleoylglycine were equivalent, the two compounds differed dramatically with respect to their effects on serum levels of oleamide. Oleamide administration (80mg/kg) elevated blood-borne oleamide by eight-fold, whereas, the same dose of oleoylglycine had no effect on circulating oleamide levels. In addition, pretreatment with the established PAM inhibitor, disulfiram, produced modest reductions in the hypothermic responses to both oleoylglycine and oleamide, suggesting that the effects of disulfiram were not mediated through inhibition of PAM and a resulting decrease in the formation of oleamide from oleoylglycine. Collectively, these findings raise the possibilities that: (1) oleoylglycine possesses biologic activity that is independent of its conversion to oleamide and (2) the increased availability of oleoylglycine as a potential substrate does not drive the biosynthesis of oleamide.  相似文献   

10.
5-HT(1A) receptor agonists display anxiolytic and anti-depressant properties in clinical studies. In this study, we used the alpha-[(14)C]methyl-l-tryptophan (alpha-MTrp) autoradiographic method to evaluate the effects of the 5-HT(1A) agonist, flesinoxan, on regional 5-HT synthesis in the rat brain, following acute or a 14-day continuous treatment. In the first series of experiments, flesinoxan (5mg/kg; i.p.) was administered 40min before the alpha-MTrp. It resulted in a significant increase of the arterial blood oxygen partial pressure (pO(2)) and a reduction of the regional rate of 5-HT synthesis throughout the brain, with the exception of a few regions (medial geniculate body and thalamus). In the second series of experiments, flesinoxan (5mg/kgday) was administered for 14 days, using an osmotic minipump implanted subcutaneously. When compared to rats treated with saline, there was an overall significant (p<0.05) reduction in the synthesis (one-sample two-tailed t-test). However, there was no significant influence on the 5-HT synthesis rate in the dorsal and median raphe nuclei and the majority of their projection areas. A significant (p<0.05) reduction was observed in the nucleus raphe magnus, medial caudate, ventral thalamus, amygdala, ventral tegmental area, medial forebrain bundle, nucleus accumbens, medial anterior olfactory nucleus and superior olive. The unaltered 5-HT synthesis rates in a large majority of regions following the 14-day treatment of flesinoxan may reflect the normalization (implies to not be different from salne treated control) of synthesis due to a desensitization of 5-HT(1A) autoreceptors on the cell body of 5-HT neurons as well as at postsynaptic sites, which is known to occur following long-term treatment with 5-HT(1A) agonists. It is of some importance to note that the normalization of the synthesis occurred in the majority of the brain limbic structures, the brain areas implicated in affective disorders and the corresponding successful treatments, as well as in the cortical regions, which are implicated in mood. However, there were some terminal regions (e.g., accumbens, anterior olfactory, lateral thalamus, raphe magnus and obscurus) in which the chronic flesinoxan treatment resulted in a significant reduction of synthesis, suggesting that there was not a full desensitization across the brain of the receptors controlling 5-HT synthesis.  相似文献   

11.
A neuroblastoma X Chinese hamster embryonic brain explant hybrid cell line (NCB-20) expressed 5-hydroxytryptamine (5-HT1) receptors, linked to adenylate cyclase, which closely resembled 5-HT1 receptors previously characterized in central nervous tissue. However, the affinity of the receptors for 5-HT was only 150 nM compared to 5 nM in membranes prepared from cerebral cortex. The elevation of cyclic AMP levels in NCB-20 cells produced by 5-HT was found additive to that produced by cholera toxin but synergistic with that produced by either prostaglandin E1 (PGE1) or forskolin, suggesting that these latter two agents elevate cyclic AMP levels by a different mechanism than 5-HT. The elevation of cyclic AMP levels by either 5-HT or PGE1 was reversed by [D-Ala2,D-Leu5]enkephalin (DADLE), morphine, clonidine, and 3,4-dihydroxyphenylethylamine (dopamine) on a short (30 min) time scale. However, continued exposure to DADLE resulted in loss of the initial inhibitory effects of DADLE after 6 h and return of cyclic AMP levels to that seen with either 5-HT or PGE1 alone. When the DADLE exposure time was increased to 48 h, 5-HT produced a further twofold increase in cyclic AMP levels, but there was no increase in the responsiveness of the cells to PGE1 unless naloxone was added 1 h prior to treatment with PGE1. Scatchard analysis showed that the increased potency of 5-HT resulted from an increase in receptor affinity for 5-HT (from a KD of 150 +/- 20 nM to one of 20 +/- 7 nM), with a reduction in the number of apparent binding sites. The 5-HT supersensitivity observed in NCB-20 cells may be a good model for neurotransmitter interactions that produce desensitization or facilitation in the intact nervous system.  相似文献   

12.
An increase in central postsynaptic 5-hydroxytryptamine (5-HT) function activates expression of activity-related cytoskeletal protein (Arc). Here, Arc expression was used to test whether, in rats, co-administration of a 5-HT re-uptake inhibitor (paroxetine) and a 5-HT1A receptor antagonist (WAY 100635) increases postsynaptic 5-HT function. After pre-treatment with WAY 100635 (0.3 mg/kg s.c.), paroxetine (5 mg/kg s.c.) caused a threefold increase in 5-HT in prefrontal cortex microdialysates. In situ hybridization studies found that neither paroxetine (5 mg/kg s.c.) nor WAY 1000635 (0.3 mg/kg s.c.) altered Arc mRNA abundance in any region examined. In contrast, paroxetine (5 mg/kg s.c.) increased Arc mRNA after pre-treatment with WAY 100635 (0.3 mg/kg s.c.). This increase was apparent in cortical regions (frontal, parietal and cingulate) and caudate nucleus but was absent in hippocampus (CA1). Increases in Arc mRNA were accompanied by an increase in c-fos mRNA. The increase in Arc expression induced by paroxetine/WAY 100635 was abolished by the 5-HT synthesis inhibitor, p-chlorophenylalanine (300 mg/kg i.p., daily for two days). In conclusion, paroxetine and WAY 100635 injected in combination (but not alone) caused a region-specific, 5-HT-mediated increase in Arc expression. These data provide molecular evidence that co-administration of a 5-HT re-uptake inhibitor and 5-HT1A receptor antagonist increases 5-HT function at the postsynaptic level.  相似文献   

13.
Two series of arylpiperazinyl-alkyl quinoline-, isoquinoline-, naphthalene-sulfonamides with flexible (13-26) and semi-rigid (33-36) alkylene spacer were synthesized and evaluated for 5-HT(1A), 5-HT(2A), 5-HT(6), 5-HT(7) and selected compounds for D(2), D(3), D(4) receptors. The compounds with a mixed 5-HT and D receptors profile 16 (N-{4-[4-(3-chlorophenyl)-piperazin-1-yl]-butyl}-3-quinolinesulfonamide) and 36 (4-(4-{2-[4-(4-chloro-phenyl)-piperazin-1-yl]-ethyl}-piperidine-1-sulfonyl)-isoquinoline), displaying antagonistic activity at 5-HT(7), 5-HT(2A), D(2) postsynaptic sites, produced antidepressant-like effects in the forced swim test in mice and showed significant anxiolytic activity in the plus-maze test in rats. The lead compound 36, a multi-receptor 5-HT(2A)/5-HT(7)/D(2)/D(3)/D(4) agent, also displayed significant antipsychotic properties in the MK-801-induced hyperlocomotor activity in mice.  相似文献   

14.
The purpose of the present study was to examine the effect of altering the concentration of 5-hydroxytryptamine (5-HT) on beta-endorphin (beta-Ep) content in the hypothalamus, thalamus, and periaqueductal gray (PAG)-rostral pons regions of the rat brain. The selective 5-HT reuptake inhibitor, fluoxetine (10 mg/kg), significantly lowered beta-Ep content in the hypothalamus and the PAG. Parachlorophenylalanine, which inhibits 5-HT synthesis, significantly elevated beta-Ep in all brain parts studied. Intracisternal injections of the neurotoxin, 5',7'-dihydroxytryptamine, with desmethylimipramine pretreatment, significantly increased beta-Ep content in the hypothalamus and the PAG. In adrenalectomized rats, fluoxetine significantly decreased beta-Ep levels in the hypothalamus and increased the levels in the PAG. The results indicate that 5-HT may modulate the levels of brain beta-Ep.  相似文献   

15.
Influence of Fluoxetine on Regional Serotonin Synthesis in the Rat Brain   总被引:4,自引:2,他引:2  
Abstract: The aim of the present study was to test the hypothesis that there should be a difference between the effects of an acute and an 8-day (chronic) administration of fluoxetine (10 mg/kg) on the rate of serotonin [5-hydroxytryptamine (5-HT)] synthesis. The 5-HT synthesis rate was measured in discrete regions of the rat brain using the α-[14C]methyl- l -tryptophan autoradiographic method. The results show that the acute and chronic fluoxetine treatments influence the 5-HT synthesis rate in different ways. A single dose of fluoxetine induced a significant increase in 5-HT synthesis in the visual, auditory, and parietal cortices, substantia nigra, hypothalamus, ventral thalamus, and dorsal hippocampus. In contrast, after a chronic treatment a decrease was observed in the substantia nigra, caudate, and nucleus accumbens, the auditory, parietal, sensorimotor, and frontal cortices, and ventral tegmental area. A significant decrease in the rate of 5-HT synthesis was observed in the dorsal raphe after both the single and chronic treatments. The results suggest that extracellular 5-HT has a delayed influence on the brain 5-HT synthesis rate in structures with serotonergic terminals. The findings from the acute study could be important for patients who have just started receiving fluoxetine treatment, as an increase in the 5-HT synthesis rate might occur in the acute phase of their treatment. In addition, the findings from the chronic treatment study might give us a better understanding of how the brain serotonergic system adapts during a prolonged exposure to extracellular 5-HT.  相似文献   

16.
17.
Levels of norepinephrine, epinephrine, dopamine, and serotonin (5-HT) and their precursors [tyrosine, L-3,4-dihydroxyphenylalanine, tryptophan, and 5-hydroxytryptophan (5-HTP)] and metabolites [3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), homovanillic acid, 3-methoxy-4-hydroxyphenylglycol, and 5-hydroxyindoleacetic acid (5-HIAA)] were determined concurrently in samples of chick retina, pineal gland, and nine selected areas of the brain (optic lobes, thalamus, hypothalamus, optic chiasm, pons/medulla, cerebellum, neostriatum/ectostriatum, hyperstriatum, and basal forebrain) using HPLC coupled with a coulometric electrode array detection system. The norepinephrine level was highest in the pineal gland, but it was also widely distributed throughout the chick brain, with the thalamus and hypothalamus showing substantial levels. The dopamine level was highest in the basal forebrain. The epinephrine level was highest in the hypothalamus. The thalamus and hypothalamus showed the highest levels of 5-HT. Daytime levels (1100 h) of these compounds were compared with levels in chicks killed in the middle of the dark phase (2300 h). In the brain areas examined, no day/night variations in levels of norepinephrine, epinephrine, dopamine, or 5-HT were seen, although significant nocturnal changes in levels of their metabolites were observed in some areas. Pineal levels of 5-HIAA decreased significantly at night. The retina showed significant nocturnal increases in 5-HTP, 5-HT, and 5-HIAA levels. Retinal levels of 3-MT and DOPAC were significantly decreased at night.  相似文献   

18.
Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP-) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain-specific effect of ATD Moja-De on anxiety-like behavior.  相似文献   

19.
2-(2',6'-Dimethoxy-[1,1'-biphenyl]-3-yl)-N,N-dimethylethanamine has been identified as a potent ligand for the serotonin 7 (5-HT(7)) receptor. In this study, we describe the synthesis, radiolabeling and in vivo evaluation of [(11)C]2-(2',6'-dimethoxy-[1,1'-biphenyl]-3-yl)-N,N-dimethylethanamine ([(11)C]Cimbi-806) as a radioligand for imaging brain 5-HT(7) receptors with positron emission tomography (PET). Precursor and reference compound was synthesized and subsequent (11)C-labelling with [(11)C]methyltriflate produced [(11)C]Cimbi-806 in specific activities ranging from 50 to 300 GBq/μmol. Following intravenous injection, brain uptake and distribution of [(11)C]Cimbi-806 was assessed with PET in Danish Landrace pigs. The time-activity curves revealed high brain uptake in thalamic and striatal regions (SUV ~2.5) and kinetic modeling resulted in distribution volumes (V(T)) ranging from 6 mL/cm(3) in the cerebellum to 12 mL/cm(3) in the thalamus. Pretreatment with the 5-HT(7) receptor antagonist SB-269970 did not result in any significant changes in [(11)C]Cimbi-806 binding in any of the analyzed regions. Despite the high brain uptake and relevant distribution pattern, the absence of appropriate in vivo blocking with a 5-HT(7) receptor selective compounds renders the conclusion that [(11)C]Cimbi-806 is not an appropriate PET radioligand for imaging the 5-HT(7) receptor in vivo.  相似文献   

20.
It has become increasingly evident the serotonergic (5-hydroxytryptamine, 5-HT) system is an important central neuronal network disrupted following neonatal hypoxic–ischemic (HI) insults. Serotonin acts via a variety of receptor subtypes that are differentially associated with behavioural and cognitive mechanisms. The 5-HT7 receptor is purported to play a key role in epilepsy, anxiety, learning and memory and neuropsychiatric disorders. Furthermore, the 5-HT7 receptor is highly localized in brain regions damaged following neonatal HI insults. Utilising our well-established neonatal HI model in the postnatal day 3 (P3) rat pup we demonstrated a significant decrease in levels of the 5-HT7 protein in the frontal cortex, thalamus and brainstem one week after insult. We also observed a relative decrease in both the cytosolic and membrane fractions of 5-HT7. The 5-HT7 receptor was detected on neurons throughout the cortex and thalamus, and 5-HT cell bodies in the brainstem. However we found no evidence of 5-HT7 co-localisation on microglia or astrocytes. Moreover, minocycline treatment did not significantly prevent the HI-induced reductions in 5-HT7. In conclusion, neonatal HI injury caused significant disruption to 5-HT7 receptors in the forebrain and brainstem. Yet the use of minocycline to inhibit activated microglia, did not prevent the HI-induced changes in 5-HT7 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号