共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2019,1864(3):386-393
IntroductionParaoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated lactonase, which is known for its antiatherogenic properties. Previous studies in PON1 knockout (PON1KO) mice revealed that PON1KO mice have low blood pressure, which is inversely correlated with the renal levels of the cytochrome P450 -derived arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (5,6-EET). Our previous studies revealed that 5,6-EET is unstable, transforming to the δ-lactone isomer 5,6-δ-DHTL, an endothelium-derived hyperpolarizing factor (EDHF) that mediates vasodilation, and it is a potential substrate for PON1.AimTo elucidate the role of PON1 in the modulation of vascular resistance via the regulation of the lactone-containing metabolite 5,6-δ-DHTL.ResultsIn mouse resistance arteries, PON1 was found to be present and active in the endothelial layer. Vascular reactivity experiments revealed that 5,6-δ-DHTL dose-dependently dilates PON1KO mouse mesenteric arteries significantly more than wild type (w.t.) resistance arteries. Pre-incubation with HDL or rePON1 reduced 5,6-δ-DHTL-dependent vasodilation. FACS analyses and confocal microscopy experiments revealed that fluorescence-tagged rePON1 penetrates into human endothelial cells' (ECs') in both dose- and time- dependent manner, accumulate in the perinuclear compartment, and retains its lactonase activity in the cells. The presence of rePON1, but not the presence of PON1 loss-of-lactonase-activity mutant, reduced the Ca2+ influx in the ECs mediated by 5,6-δ-DHTL.ConclusionPON1 lactonase activity in the endothelium affects vascular dilation by regulating Ca2+ influx mediated by the lactone-containing EDHF 5,6-δ-DHTL. 相似文献
2.
Xiang L Naik JS Abram SR Hester RL 《American journal of physiology. Heart and circulatory physiology》2007,292(1):H231-H236
Individuals with hyperglycemia exhibit impaired exercise performance and functional vasodilatory response. Based on the importance of arachidonic acid (AA) metabolites in functional vasodilation and the increased thromboxane-to-prostacyclin ratio in diabetes, we hypothesized that chronic hyperglycemia in diabetes increases thromboxane-receptor (TP)-mediated vasoconstriction, resulting in an attenuated functional vasodilation. Three groups of lean Zucker rats (8 wk) were used to test the effects of chronic hyperglycemia on endothelial function: normal, streptozotocin (STZ; 70 mg/kg ip), and STZ + insulin (2 U/day). After 4 wk of treatment, spinotrapezius arcade arterioles were chosen for microcirculatory observation. Arteriolar diameter was measured following muscle stimulation and 10 microM AA application in the absence and presence of 1 microM SQ-29548 (TP antagonist). STZ rats exhibited significantly higher fasting glucose levels and attenuated functional and AA-induced dilation compared with normal animals. SQ-29548 improved the vasodilatory responses in STZ rats but had no effect in controls. Insulin treatment normalized both the glucose levels and the vasodilatory responses, and SQ-29548 treatment had no effect on functional or AA-mediated vasodilation in STZ + insulin animals. These results suggest that the impaired functional vasodilation in diabetic rats is due to hyperglycemia-mediated increases in TP-mediated vasoconstriction. 相似文献
3.
Altered arachidonic acid metabolism during differentiation of the human monoblastoid cell line U937 总被引:1,自引:0,他引:1
L Koehler R Hass K Wessel D L DeWitt V Kaever K Resch M Goppelt-Struebe 《Biochimica et biophysica acta》1990,1042(3):395-403
The human cell line U937 was used as a model for differentiation along the mononuclear phagocyte lineage. Following treatment with the phorbol ester TPA, PGE2 and TxB2 secretion was induced 50-100-fold, and both PGF2 alpha and PGI2 levels became detectable in the supernatant of TPA-differentiated U937 cells. The content of the prostaglandin precursor, arachidonic acid, remained unchanged in the cellular phospholipids of undifferentiated and TPA-differentiated U937 cells. Of the enzymes involved in the availability and metabolism of arachidonic acid, phospholipase A2 activity was increased 2-fold in the membranes of TPA-differentiated U937 cells, whereas lysophosphatide acyltransferase activity remained unaltered. Cyclooxygenase activity, however, was enhanced 5-10-fold, which was due to enhanced expression of the enzyme as demonstrated by dot-blot analysis. The data suggest that the capacity to secrete prostaglandins is acquired during differentiation with TPA and results mainly from an increased cyclooxygenase activity. Despite the capacity of TPA-differentiated U937 cells to synthesize prostaglandins, none of the known monocytic stimuli further stimulated prostaglandin secretion in TPA-differentiated U937 cells. Generation of leukotrienes appears to represent a later state in the differentiation along the monocyte-macrophage lineage, since neither LTB4 nor cysteinyl-leukotrienes were detectable in the supernatants of either undifferentiated or TPA-differentiated U937 cells. 相似文献
4.
Human alveolar macrophage arachidonic acid metabolism 总被引:2,自引:0,他引:2
Brown G. P.; Monick M. M.; Hunninghake G. W. 《American journal of physiology. Cell physiology》1988,254(6):C809
5.
Glucocorticoid effect on arachidonic acid metabolism in vivo 总被引:1,自引:0,他引:1
A Náray-Fejes-Tóth B Rosenkranz J C Fr?lich G Fejes-Tóth 《Journal of steroid biochemistry》1988,30(1-6):155-159
Glucocorticoids have been shown in in vitro systems to inhibit the release of arachidonic acid metabolites, namely prostaglandins (PGs) and leukotrienes, apparently, via the induction of a phospholipase A2 inhibitory protein, called lipocortin. On the basis of these in vitro results, it has been suggested that inhibition of eicosanoid production is, at least partially, responsible for the well-known anti-inflammatory effect of glucocorticoids. There is, however, no firm evidence proving that glucocorticoids also inhibit prostaglandin or leukotriene synthesis in vivo. In a series of studies, we have investigated the effects of anti-inflammatory steroids on the production of six different cyclo-oxygenase products in vivo. Urinary prostaglandin (PG) E2(1), PGF2 alpha, thromboxane B2 (TxB2), 6-keto-PGF1 alpha, and the major urinary metabolites of the E and F PGs, PGE-M and PGF-M, respectively, were determined by radioimmunoassay and by GC-MS. Administration of pharmacological doses of dexamethasone to rabbits failed to inhibit urinary excretion rates of PGE2, TxB2, 6-keto-PGF1 alpha and that of PGE-M and PGF-M. In contrast, urinary PGF2 alpha was slightly reduced by dexamethasone. In further experiments the effect of dexamethasone was studied in humans. Urinary excretion rates of PGE2, PGE-M, PGF-M, 2,3-dinor TxB2 and 2,3-dinor 6-keto-PGF1 alpha were not suppressed by dexamethasone. Collagen-induced platelet TxB2 formation and platelet aggregation was also unaltered. To test one possible explanation for the apparent discrepancy between in vitro and in vivo effects of glucocorticoids on arachidonic acid metabolites we investigated the effects of dexamethasone in vivo on basal and on antidiuretic hormone-stimulated renal PG synthesis. Dexamethasone treatment failed to inhibit both basal and antidiuretic hormone-stimulated PGE2 and PGF2 alpha production. We conclude that glucocorticoids in vivo do not decrease the basal rate of total body, kidney and platelet prostanoid synthesis, and that dexamethasone does not inhibit renal PG production when it is elevated by antidiuretic hormone, a physiological stimulus. Thus, a differential effect of glucocorticoids on basal vs stimulated PG synthesis cannot account for the discrepancy between in vivo and in vitro effects. 相似文献
6.
Metabolism of arachidonic acid via the cyclooxygenase and lipoxygenase pathways was studied in washed platelets from normal and asthmatic subjects. The platelets were incubated with [1-14C] arachidonic acid and the metabolites formed were separated by high pressure liquid chromatography (HPLC). The platelets from asthmatic patients had a 40% decrease in cyclooxygenase-derived metabolites and a 70% increase in lipoxygenase-derived product when compared with metabolites generated by platelets from normal subjects. The ratio of cyclooxygenase to lipoxygenase products was 3.24 ± 0.26 for platelets from normal subjects, and 1.14 ± 0.15 with platelets from the asthmatic patients. These results indicate an imbalance of arachidonic acid metabolism in platelets from asthmatic patients. 相似文献
7.
Epoxygenase pathways of arachidonic acid metabolism. 总被引:19,自引:0,他引:19
D C Zeldin 《The Journal of biological chemistry》2001,276(39):36059-36062
8.
Ameer Y. Taha Hyung‐Wook Kim Lisa Chang Stanley I. Rapoport Yewon Cheon 《Journal of neurochemistry》2013,124(3):376-387
Chronic administration of mood stabilizers to rats down‐regulates the brain arachidonic acid (AA) cascade. This down‐regulation may explain their efficacy against bipolar disorder (BD), in which brain AA cascade markers are elevated. The atypical antipsychotics, olanzapine (OLZ) and clozapine (CLZ), also act against BD. When given to rats, both reduce brain cyclooxygenase activity and prostaglandin E2 concentration; OLZ also reduces rat plasma unesterified and esterified AA concentrations, and AA incorporation and turnover in brain phospholipid. To test whether CLZ produces similar changes, we used our in vivo fatty acid method in rats given 10 mg/kg/day i.p. CLZ, or vehicle, for 30 days; or 1 day after CLZ washout. [1‐14C]AA was infused intravenously for 5 min, arterial plasma was collected and high‐energy microwaved brain was analyzed. CLZ increased incorporation coefficients and rates Jin,i of plasma unesterified AA into brain phospholipids i, while decreasing plasma unesterified but not esterified AA. These effects disappeared after washout. Thus, CLZ and OLZ similarly down‐regulated kinetics and cyclooxygenase expression of the brain AA cascade, likely by reducing plasma unesterified AA availability. Atypical antipsychotics and mood stabilizers may be therapeutic in BD by down‐regulating, indirectly or directly respectively, the elevated brain AA cascade of that disease. 相似文献
9.
Drug molecules not only interact with specific targets, but also alter the state and function of the associated biological network. How to design drugs and evaluate their functions at the systems level becomes a key issue in highly efficient and low–side-effect drug design. The arachidonic acid metabolic network is the network that produces inflammatory mediators, in which several enzymes, including cyclooxygenase-2 (COX-2), have been used as targets for anti-inflammatory drugs. However, neither the century-old nonsteriodal anti-inflammatory drugs nor the recently revocatory Vioxx have provided completely successful anti-inflammatory treatment. To gain more insights into the anti-inflammatory drug design, the authors have studied the dynamic properties of arachidonic acid (AA) metabolic network in human polymorphous leukocytes. Metabolic flux, exogenous AA effects, and drug efficacy have been analyzed using ordinary differential equations. The flux balance in the AA network was found to be important for efficient and safe drug design. When only the 5-lipoxygenase (5-LOX) inhibitor was used, the flux of the COX-2 pathway was increased significantly, showing that a single functional inhibitor cannot effectively control the production of inflammatory mediators. When both COX-2 and 5-LOX were blocked, the production of inflammatory mediators could be completely shut off. The authors have also investigated the differences between a dual-functional COX-2 and 5-LOX inhibitor and a mixture of these two types of inhibitors. Their work provides an example for the integration of systems biology and drug discovery. 相似文献
10.
11.
Arachidonic acid was incorporated into triglycerides by cultured bovine endothelial cells in a time- and concentration-dependent manner. At 75 microM or higher, more arachidonic acid was incorporated into triglycerides than into phospholipids. The triglyceride content of the cells increased as much as 5.5-fold, cytoplasmic inclusions appeared, and arachidonic acid comprised 22% of the triglyceride fatty acids. Triglyceride turnover occurred during subsequent maintenance culture; there was a 60% decrease in the radioactive arachidonic acid contained in triglycerides and a 40% decrease in triglyceride content in 6 hr. Most of the radioactivity was released into the medium as free fatty acid. The turnover of arachidonic acid, but not oleic acid in cellular triglycerides, decreased when supplemental fatty acid was added to the maintenance medium. Incorporation and turnover of radioactive arachidonic acid in triglycerides also was observed in human skin fibroblasts, 3T3-L1 cells, and MDCK cells. Other fatty acids were incorporated into triglycerides by the endothelial cells; the amounts after a 16-hr incubation with 50 microM fatty acid were 20:3 greater than 20:4 greater than 18:1 greater than 18:2 greater than 22:6 greater than 16:0 greater than 20:5. These findings indicate that triglyceride formation and turnover can play a role in the fatty acid metabolism of endothelial cells and that arachidonic acid can be stored in endothelial cell triglycerides. 相似文献
12.
Fujimoto Y Ikeda M Sakuma S 《Biochemical and biophysical research communications》2006,344(1):140-145
In the present study, the effects of hypochlorous acid (HOCl), monochloramine (NH(2)Cl), glutamine-chloramine (Glu-Cl) and taurine-chloramine (Tau-Cl) on the formation of 12-lipoxygenase (LOX) metabolite, 12-HETE, and cyclooxygenase (COX) metabolites, TXB(2), and 12-HHT, from exogenous arachidonic acid (AA) in rat platelets were examined. Rat platelets (4x10(8)/ml) were preincubated with drugs for 5min at 37 degrees C prior to the incubation with AA (40microM) for 2min at 37 degrees C. HOCl (50-250microM) showed an inhibition on the formation of LOX metabolite (12-HETE, 5-67% inhibition) and COX metabolites (TXB(2), 33-73% inhibition; 12-HHT, 27-74% inhibition). Although Tau-Cl and Glu-Cl up to 100microM were without effect on the formation of 12-HETE, TXB(2) and 12-HTT, NH(2)Cl showed a strong inhibition on the formation of all three metabolites (10-100microM NH(2)Cl, 12-HETE, 21-92% inhibition; TXB(2), 58-94% inhibition; 12-HHT, 36-92% inhibition). Methionine reversed a reduction of formation of LOX and COX metabolites induced by NH(2)Cl, and taurine restoring that induced by both NH(2)Cl and HOCl. These results suggest that NH(2)Cl is a more potent inhibitor of COX and LOX pathways in platelets than HOCl, and taurine and methionine can be modulators of NH(2)Cl-induced alterations in the COX and LOX pathways in vivo. 相似文献
13.
Dongjuan Yuan Qiuqiong Zou Ting Yu Cuikai Song Shengfeng Huang Shangwu Chen Zhenghua Ren Anlong Xu 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(9):1272-1284
Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus. 相似文献
14.
Cytochrome P450 pathways of arachidonic acid metabolism 总被引:6,自引:0,他引:6
Cytochrome P450s metabolize arachidonic acid to hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. These eicosanoids are formed in a tissue and cell-specific manner and have numerous biological functions. Of major interest are the opposing actions of hydroxyeicosatetraenoic and epoxyeicosatrienoic acids within the vasculature. Regio- and stereoisomeric epoxyeicosatrienoic acids have potent vasodilatory properties while 20-hydroxyeicosatetraenoic acid is a potent vasoconstrictor. Both effects are mediated through actions on large-conductance Ca2+-activated K+ channels. Cytochrome P450-derived eicosanoids are also important in the regulation of ion transport, and have recently been shown to influence a number of fundamental biological processes including cellular proliferation, apoptosis, inflammation, and hemostasis. The formation of these functionally relevant eicosanoids is tightly controlled by the expression and activity of the cytochrome P450 epoxygenases and hydroxylases. In addition, soluble epoxide hydrolase catalyzes the hydrolysis of epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids, and the activity of this enzyme is a critical determinant of tissue epoxyeicosatrienoic and dihydroxyeicosatrienoic acid levels. The intracellular balance between epoxyeicosatrienoic, dihydroxyeicosatrienoic and hydroxyeicosatetraenoic acids influences the biological response to these eicosanoids and alterations in their levels have recently been associated with certain pathological conditions. The involvement of the cytochrome P450-derived eicosanoids in a wide array of biological functions and the observation that levels are altered in pathological conditions suggest that the enzymes involved in the formation and degradation of these fatty acids may be novel therapeutic targets. 相似文献
15.
L Levine 《Biochemical and biophysical research communications》1991,178(2):641-647
Preincubation of rat liver cells (the C-9 cell line) for 25 min with phenylarsine oxide at levels ranging from 0.06 to 0.6 microM amplifies prostaglandin I2 production when subsequently stimulated by platelet activating factor, lysine vasopressin, bradykinin, thapsigargin, and the Ca2+ ionophore, A-23187, but not that stimulated by exogenous arachidonic acid. The amplification is decreased after preincubation for 25 min with 1.8 microM phenylarsine oxide. Preincubation of mouse lymphoma cells (the WEHI-3 cell line) with phenylarsine oxide at levels ranging from 0.06 to 1.8 microM for 60 min does not affect prostaglandin E2 levels but inhibits leukotriene B4 and C4 production stimulated by the Ca(2+)-ionophore, A-23187. Amplification of prostaglandin production by phenylarsine oxide is reversed 100 times more effectively by 2,3-dimercaptopropanol than by 2-mercaptoethanol. Deesterification of lipids appears to be regulated positively in rat liver cells and leukotriene production negatively in mouse lymphoma cells by phosphorylation of tyrosine. 相似文献
16.
A P Pentland 《Journal of cellular physiology》1989,139(2):392-397
Fibroblasts are routinely maintained in vitro on tissue culture plastic, in an environment which is devoid of collagen, the most abundant extracellular protein in dermis. Recent work has shown that by seeding fibroblasts into a collagen matrix, many aspects of their metabolism change dramatically: they stop proliferation, organize and contract the collagen matrix, and secrete much larger quantities of the usual extracellular matrix components. Because so many fibroblast functions are dramatically altered by the presence of the collagen matrix, matrix effects on fibroblast metabolism of arachidonic acid were examined. The studies presented here show that during the period of matrix contraction, metabolism of arachidonate to prostaglandins by fibroblasts is increased sixfold compared to cells plated on plastic, and that this increase is correlated with contraction but does not regulate it. The increase in prostaglandin synthesis is due in part to an increased new synthesis of the rate-limiting enzyme in prostaglandin synthesis, cyclooxygenase. No change in the profile of products the fibroblasts synthesize from arachidonate is induced by the presence of the matrix. After the lattice contraction is complete, the basal arachidonate metabolism of matrix-embedded cells have the same capacity to synthesize PGE2 in response to IL-1 as do cells grown on plastic. However, the response to the hormone agonist bradykinin by the matrix-embedded cells is present on day 1 but not on day 3, the time when cells grown on plastic are most responsive. These data indicate that while basal prostaglandin metabolism is unaffected in quiescent fibroblasts which have been embedded in a collagen matrix, response to hormone agonists may be greatly attenuated. The changes in the metabolism of arachidonate which occur during the process of matrix contraction and organization may play a part in the regulation of wound repair. 相似文献
17.
Chakraborti T Mandal M Das S Chakraborti S 《Biochemistry and molecular biology international》1999,47(3):501-507
Arachidonic acid (AA) metabolism was assessed in cultured alveolar macrophages (AM) obtained from newborn (10 days old) and adult (2 months and 4 months old) rats. The AMs were stimulated with the calcium ionophore, A23187 (10 microM). The released radiolabelled AA metabolites were measured by thin layer chromatography. The results showed that among different aged rats, the synthesis of 5-lipoxygenase (5-LO) metabolites, LTB4, LTC4, LTD4 and 5-HETE were increased with age inspite of similar levels of [14C]AA release. In response to A23187, 5-LO metabolic capacity of 2 and 4 months old adult rat AMs were increased 21-fold and 34-fold, respectively, compared with 10 days old rat AMs. As the metabolic capacity increased, the release of prostaglandins and thromboxane B2 tended to decrease markedly. Newborn rats (10 days old) AM, at the initial developmental stage, did not produce a noticeable amount of 5-LO metabolites which, conceivably, contribute to high susceptibility of neonatal lung to infection. 相似文献
18.
Perseghin G 《Current opinion in lipidology》2005,16(4):416-420
PURPOSE OF REVIEW: The metabolic syndrome has been emphasized as affecting an important subset of individuals at high risk for cardiovascular disease leading the National Cholesterol Educational Program Adult Treatment Panel III in highlighting awareness of insulin-resistance syndrome. Insulin resistance is thought to be an underlying feature of the metabolic syndrome and in the last few years efforts have been performed to assess the effects of ectopic fat accumulation on whole-body glucose metabolism and on the pathogenesis of insulin resistance. RECENT FINDINGS: Abnormality of fatty acid metabolism and ectopic fat accumulation within skeletal muscle has been measured using the traditional biopsy technique but this field of investigation has been exploited considerably more recently thanks to the use of non-invasive H-magnetic resonance spectroscopy. Initial data supported the hypothesis that a strong causal relationship between increased intra-myocellular lipid (IMCL) content and whole-body insulin resistance might exist. Indeed, experimental evidence is still controversial especially when the modulation of the IMCL content is induced by physical exercise and nutritional interventions. SUMMARY: It has been suggested recently that the flux of muscular fatty acids as a source of oxidative energy may play a pivotal role into the development of the abnormalities of muscle and whole-body energy metabolism, potentially as the basis of the pathogenesis of obesity, the metabolic syndrome and type 2 diabetes. 相似文献
19.
The role of arachidonic acid in rat heart cell metabolism 总被引:4,自引:0,他引:4
Although it is known that arachidonic acid accumulates in the ischemic myocardium and that cardiac prostaglandin formation from the precursor arachidonic acid is altered during disease states, the role of arachidonic acid in the myocyte itself is not yet clear. Using isolated Ca-tolerant adult rat heart muscle cells, we were able to study cardiac metabolism of arachidonic acid without the effects induced by endothelial or other non-muscle tissue. Myocytes rapidly incorporate arachidonic acid as well as other fatty acids into their lipid pools, the predominant acceptor being the triacylglycerols at an extracellular fatty acid concentration of 20 microM. As exogenous arachidonic acid is decreased, the distribution pattern shifts to favor phospholipid esterification. Cardiocyte prostaglandin production from arachidonic acid added to the incubation medium was limited (less than 1% conversion of added arachidonic acid) and lipoxygenase pathway activity was not detected. Oxidation rates of arachidonic acid were 3-fold lower than for palmitic acid, indicating that it is of secondary importance in energy-yielding reactions. Our results suggest that arachidonic acid serves primarily as a structural component of myocardial membranes and that its release during ischemia would permit its use as a substrate for prostaglandin production by coronary vascular tissue. 相似文献
20.
T Radeau C Chavis M Damon F B Michel A Crastes de Paulet P H Godard 《Prostaglandins, leukotrienes, and essential fatty acids》1990,41(2):131-138
In stable state asthmatic patients (AP) without any airway obstruction, the capacity of peripheral blood polymorphonuclear neutrophils (PMN) to produce 5-lipoxygenase metabolites and to migrate, was investigated and compared with the response in healthy subjects (HS). After calcium-ionophore A23187 stimulation, PMN from AP and HS produced LTB4, its hydroxylated derivatives: omega-OH-and omega-CO2H-LTB4) (omega-LTB4, i.e 6-trans-LTB4 and 5,6-diHETE isomers, and 5-HETE. We found an increase in LTB4 (+59%), omega-LTB4 (+39%), 6-trans-LTB4 (+128%), and free 5-HETE (+63%) generation of AP as compared with HS. Unstimulated migration was enhanced in AP (122 +/- 27 PMN/10 high power fields (hpf) in AP versus 74 +/- 25 PMN/10 hpf in HS, p less than 0.025) and suggested a greater capacity of PMN from AP to migrate. This was confirmed by the PAF-induced chemotaxis studies which showed, in AP, a greater PAF-sensitivity of PMN (10(-6) M versus 10(-5) M in HS) and a greater chemotaxis response (600 +/- 50 PMN versus 200 +/- 35 PMN in HS). In AP, we compared the capacity of PMN to generate LTB4 and 5-HETE with their capacity to migrate. We found an inverse correlation (r = 0.86, p less than 0.007) of intracellular free 5-HETE with chemotaxis to PAF. 相似文献