首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In young adult spontaneously hypertensive rats (SHR), mean arterial pressure (MAP) is higher in males than in females and inhibition of the renin-angiotensin system (RAS) eliminates this sex difference. After cessation of estrous cycling in female SHR, MAP is similar to that in male SHR. The purpose of this study was to determine the role of the RAS in maintenance of hypertension in aging male and female SHR. At 16 mo of age, MAP was similar in male and female SHR (183+/-5 vs. 193+/-8 mmHg), and chronic losartan (40 mg.kg-1.day-1 po for 3 wk) reduced MAP by 52% (to 90+/-8 mmHg, P<0.05 vs. control) in males and 37% (to 123+/-11 mmHg, P<0.05 vs. control) in females (P<0.05, females vs. males). The effect of losartan on angiotensin type 1 (AT1) receptor blockade was similar: MAP responses to acute doses of ANG II (62.5-250 ng/kg) were blocked to a similar extent in losartan-treated males and females. F2-isoprostane excretion was reduced with losartan more in males than in females. There were no sex differences in plasma renin activity, plasma angiotensinogen or ANG II, or renal expression of AT1 receptors, angiotensin-converting enzyme, or renin. However, renal angiotensinogen mRNA and protein expression was higher in old males than females, whereas renal ANG II was higher in old females than males. The data show that, in aging SHR, when blood pressures are similar, there remains a sexual dimorphism in the response to AT1 receptor antagonism, and the differences may involve sex differences in mechanisms responsible for oxidative stress with aging.  相似文献   

2.
The effects of neonatal sympathectomy of donors or recipients on posttransplantation arterial pressure were investigated in spontaneously hypertensive rats (SHR) by renal transplantation experiments. Conscious mean arterial pressure (MAP) and renal vascular resistance were 136 +/- 1 mmHg and 15.5 +/- 1.2 mmHg x ml(-1) x min x g in sympathectomized SHR (n = 8) vs. 158 +/- 4 mmHg (P < 0.001) and 20.8 +/- 1.1 mmHg x ml(-1) x min x g (P < 0.05) in controls (n = 10). Seven weeks after transplantation of a kidney from neonatally sympathectomized SHR donors, MAP in SHR recipients (n = 10) was 20 mmHg lower than in controls transplanted with a kidney from hydralazine-treated SHR (n = 10) (P < 0.05) associated with reduced sodium sensitivity of MAP. Neonatal sympathectomy also lowered MAP in F1-hybrids (F1H; SHR x Wistar-Kyoto rats). Within 6 wk after transplantation, renal grafts from untreated SHR increased MAP by 20 mmHg in sympathectomized F1H (n = 10) and by 35 mmHg in sham-treated F1H (n = 8) (P < 0.05). Neonatal sympathectomy induces chronic changes in SHR kidney function leading to a MAP reduction even when extrarenal sympathetic tone is restored. Generalized reduction in sympathetic tone resets the kidney-fluid system to reduced MAP and blunts the extent of arterial pressure rise induced by an SHR kidney graft.  相似文献   

3.
Treatment with tetrahydrobiopterin (BH(4)) reduces blood pressure in spontaneously hypertensive rats (SHR). In the present study, we tested the hypothesis that chronic BH(4) reduces blood pressure in male SHR by reducing testosterone biosynthesis mediated by increasing nitric oxide (NO). Male SHR, aged 17-18 wk, intact or castrated, were treated for 1 wk with BH(4) (20 mg.kg(-1).day(-1) ip). After 1 wk, mean arterial pressure (MAP), serum testosterone, and nitrate/nitrite excretion (NO(x)) were measured. MAP was significantly higher in intact males than castrated males (179 +/- 2 vs. 155 +/- 4 mmHg, P < 0.001). In intact males, BH(4) caused a 17% reduction in MAP (148 +/- 2 mmHg), had no effect on NO(x), and reduced serum testosterone by 85% (24.09 +/- 2.37 vs. 3.72 +/- 0.73 ng/dl; P < 0.001). In castrated males, BH(4) had no effect on MAP (152 +/- 5 mmHg) but increased NO(x) by 38%. When castrated males were supplemented with testosterone, MAP increased to the same level as in intact males (180 +/- 7 mmHg), and BH(4) had no effect on MAP (182 +/- 7 mmHg) or NO(x). NO has been shown to decrease testosterone biosynthesis. Chronic sodium nitrite (70 mg.kg(-1).day(-1) x 1 wk) decreased MAP in intact males (150 +/- 4 mmHg) but had no effect on serum testosterone (21.46 +/- 3.08 ng/dl). The data suggest that BH(4) reduces testosterone synthesis and thereby reduces MAP in male SHR, an androgen-dependent model of hypertension. The mechanism(s) by which BH(4) reduces serum testosterone levels are not clear, but the data do not support a role for NO as a mediator.  相似文献   

4.
The renal afferent nerves in the pathogenesis of hypertension   总被引:2,自引:0,他引:2  
The renal nerves play a role in the pathogenesis of hypertension in a number of experimental models. In the deoxycorticosterone acetate - salt (DOCA-NaCl) hypertensive rat and the spontaneously hypertensive rat (SHR) of the Okamoto strain, total peripheral renal denervation delays the development and blunts the severity of hypertension and causes an increase in urinary sodium excretion, suggesting a renal efferent mechanism. Further, selective lesioning of the renal afferent nerves by dorsal rhizotomy reduces hypothalamic norepinephrine stores without altering the development of hypertension in the SHR, indicating that the renal afferent nerves do not play a major role in the development of hypertension in this genetic model. In contrast, the renal afferent nerves appear to be important in one-kidney, one-clip and two-kidney, one-clip Goldblatt hypertensive rats (1K, 1C and 2K, 1C, respectively) and in dogs with chronic coarctation hypertension. Total peripheral renal denervation attenuates the severity of hypertension in these models, mainly by interrupting renal afferent nerve activity, which by a direct feedback mechanism attenuates systemic sympathetic tone, thereby lowering blood pressure. Peripheral renal denervation has a peripheral sympatholytic effect and alters the level of activation of central noradrenergic pathways but does not alter sodium or water intake or excretion, plasma renin activity or creatinine clearance, suggesting that efferent renal nerve function does not play an important role in the maintenance of this form of hypertension. Selective lesioning of the renal afferent nerves attenuates the development of hypertension, thus giving direct evidence that the renal afferent nerves participate in the pathogenesis of renovascular hypertension.  相似文献   

5.
Overactivity of the sympathetic nervous system and immunologic dysfunction have been shown to contribute to development and maintenance of hypertension in the Okamoto spontaneously hypertensive rat (SHR). In this study, the combined effects of reduction in sympathetic activity and immunologic manipulation on spontaneous hypertension have been determined. Neonatal SHRs received sham implants or implants of thymic tissue from Wistar donor rats. In addition, the thymus-implanted SHRs underwent bilateral renal denervation when they were 6 weeks old. At the same time, the sham-implanted SHRs underwent sham renal denervation. The denervations or sham operations were repeated when the SHRs were 9, 12, 15, and 18 weeks old. Wistar-Kyoto (WKY) rats also underwent serial sham renal denervations. Tail-cuff pressure measurements indicated that approximately 75% of the chronic hypertension in the SHRs was prevented by the combination of thymic implants and renal denervations. Direct arterial pressure measurements confirmed these results; when the rats were 21 weeks old, mean arterial pressure averaged 177 +/- 5.5 mm Hg in sham-operated SHRs, 134 +/- 2.7 mm Hg in implanted, denervated SHRs, and 121 +/- 2.1 mm Hg in sham-operated WKY rats. These data indicate that overactivity of the sympathetic nervous system and immunologic dysfunction account for the majority of the hypertension in the Okamoto SHR.  相似文献   

6.
The contribution of elevated sympathetic activity to the development of renal posttransplantation hypertension was investigated. F1 hybrids (F1H) from spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were transplanted with either an SHR or an F1H kidney and bilaterally nephrectomized. Three weeks after transplantation, sympathetic activity was assessed by measuring adrenal tyrosine hydroxylase (TH) mRNA content and recording splanchnic nerve activity (SNA) in conscious animals. To investigate the dependence of arterial pressure on sympathetic activity, animals were treated with the alpha(2)-adrenoceptor agonist guanabenz intracerebroventricularly. Mean arterial pressure (MAP) was 143 +/- 4 mmHg in recipients of an SHR kidney (n = 15) versus 110 +/- 3 mmHg in recipients of an F1H kidney (n = 10; P < 0.001). Adrenal TH mRNA content was 1.93 +/- 0.15 fmol/microg total RNA in recipients of an SHR kidney versus 1.96 +/- 0.17 fmol/microg total RNA in recipients of an F1H kidney (not significant). SNA did not differ significantly between recipients of an SHR kidney (n = 8) and recipients of an F1H kidney (n = 7) in terms of frequency and amplitude of synchronized nerve discharges. In response to cumulative intracerebroventricular administration of 10 and 20 microg guanabenz, SNA fell to 51 +/- 5% of control in recipients of an SHR kidney versus 44 +/- 6% of control in recipients of an F1H kidney (not significant) accompanied by a slight fall in MAP in either group. The results suggest that elevated sympathetic activity is not a major contributor to the development of renal posttransplantation hypertension.  相似文献   

7.
The pressure-natriuresis relationship was studied in anesthetized, 7- to 9-week-old control spontaneously hypertensive rats (SHR) and in SHR that had been treated with hydralazine (20 mg.kg-1.day-1 in drinking water) starting at 4-5 weeks of age. To minimize reflex changes in kidney function during changes in renal artery pressure, neural and hormonal influences on the kidney were fixed by surgical renal denervation, adrenalectomy, and infusion of a hormone cocktail (330 microL.kg-1.mikn-1) containing high levels of aldosterone, arginine vasopressin, hydrocortisone, and norepinephrine dissolved in 0.9% NaCl containing 1% albumin. Changes in renal function were measured using standard clearance techniques, while renal artery pressure was varied between 136 +/- 1 and 186 +/- 2 mmHg (1 mmHg = 133.32 Pa) in control SHR (n = 10) and between 113 +/- 1 and 162 +/- 2 mmHg in treated SHR (n = 11). Mean arterial pressure (+/- SE) under Inactin anesthesia was 172 +/- 3 mmHg in control SHR and 146 +/- 3 mmHg in treated SHR (p less than 0.05). Where renal artery pressure overlapped between groups, there were no significant differences in glomerular filtration rate. Renal blood flow was also similar in both groups, although at 160 mmHg blood flow was slightly but significantly reduced in treated SHR. Urine flow and total and fractional sodium excretion increased similarly with increases in renal artery pressure in both groups, but the pressure-natriuresis curve in hydralazine-treated SHR was displaced to the left along the pressure axis. The data indicate that chronic administration of hydralazine in young SHR enhances fractional sodium excretion, suggesting that tubular reabsorption of sodium is decreased by hydralazine.  相似文献   

8.
Intact male and female spontaneously hypertensive rats showed a progressive increase in blood pressure with growth; male attained systolic blood pressure levels of 244 +/- 6 mmHg, and females 205 +/- 3 mmHg at age 22 weeks. Orchidectomy at age 4 weeks significantly attenuated the systolic blood pressure elevation in the male (195 +/- 4 mmHg at age 22 weeks), but ovariectomy at age 4 weeks had no effect on the development of hypertension in the female. The pattern of development of hypertension in orchidectomized males was the same as that in intact and ovariectomized females. Administration of testosterone propionate to gonadectomized rats of both sexes conferred a male pattern of blood pressure development. These results indicate that the sexually dimorphic pattern of hypertension in the spontaneously hypertensive rat is androgen dependent, rather than estrogen dependent. Plasma norepinephrine levels did not differ between the sexes, nor were they altered by gonadectomy or testosterone replacement, suggesting that the higher blood pressures in the intact male and androgen treated male and female SHR are not dependent on increased sympathetic outflow in the established phase of hypertension. Stores of norepinephrine in the posterior hypothalamic region were significantly greater in intact male rats and testosterone treated rats of both sexes than in intact or ovariectomized females, and were higher in the pons of intact female rats than in all other groups. These alterations in central catecholamine stores were not correlated with blood pressure. Further study is needed to assess the functional significance of these androgen mediated alterations in posterior hypothalamic neurons as a determinant of the androgen mediated sexual dimorphism of blood pressure in the spontaneously hypertensive rat.  相似文献   

9.
Centrally mediated hyperactivity of the autonomic nervous system contributes to DOCA hypertension; however, the targeted peripheral vascular bed(s) remain unclear. We propose that if renal sympathetic activity is a factor in the development of DOCA-salt hypertension, then renal denervation (RDNX) should attenuate the hypertensive response. In protocol 1, uninephrectomized RDNX (n = 9) and sham-denervated (n = 6) Sprague-Dawley rats were allowed free access to 0.9% NaCl solution and 0.1% NaCl diet. Mean arterial pressure (MAP) and heart rate were telemetrically recorded for 4 days before and 36 days after DOCA (100 mg/rat) implantation; sodium and water balances were recorded daily. Protocol 2 was similar except that saline intake in sham rats (n = 7) was matched to that observed in RDNX rats of protocol 1 for 30 days; for the last 10 days, the rats were allowed free access to saline. Before DOCA in protocol 1, MAP was lower (P < 0.05) in RDNX rats (99 +/- 1 mmHg) compared with sham rats (111 +/- 3 mmHg); however, heart rate and sodium and water balances were similar between groups. RDNX attenuated the MAP response to DOCA by approximately 50% (DeltaMAP = 22 +/- 3 mmHg, where Delta is change in MAP) when compared with sham rats (DeltaMAP = 38 +/- 6). RDNX rats consumed significantly less saline than sham rats, and cumulative sodium and water balances were reduced by 33% and 23%, respectively. In protocol 2, a similar pattern in MAP elevation was observed in RDNX and saline-restricted, sham-denervated rats even when saline restriction was removed. These results indicate that the renal sympathetic nerves are important in hypertension development but that other factors are also involved.  相似文献   

10.
The mechanism by which blood pressure rises in the SHR strain remains to be elucidated. Since the long-term changes in renal sodium tubule handling associated with genetic hypertension have not been examined in detail, we hypothesized that SHR hypertension development may result from sustained renal sympathetic nerve overactivity and consequently decreased urinary sodium excretion. To test this hypothesis, we assessed renal sodium handling and cumulative sodium balance for 10 consecutive weeks in unanesthetized renal-denervated SHR, performed prior to the start of the entire 10-week metabolic studies, and their age-matched normotensive and hypertensive controls. The present investigation shows that SHR excreted less sodium than Wistar-Kyoto (WKy) rats during the initial 3-week observation period (p <0.05). This tendency was reversed when SHR were 10-wk old. Fractional urinary sodium excretion (FENa+) was significantly lower in 3 and 6-wk-old SHR when compared with the WKy age-matched group, as follows: SHR3-wk-old: 0.33 +/- 0.09% and WKy3-wk-old: 0.75 +/- 0.1% (P <0.05); SHR(6-wk-old): 0.52 +/- 0.12% and WKy6-wk-old: 0.83 +/- 0.11%. The decreased FENa+ in young SHR was accompanied by a significant increase in proximal sodium reabsorption (FEPNa+) compared with the normotensive age-matched control group (P <0.01). This increase occurred despite unchanged creatinine clearance (CCr) and fractional post-proximal sodium excretion (FEPPNa+)in all groups studied. The decreased urinary sodium excretion response in SHR up to the age of 6 weeks was significantly eradicated by bilateral renal denervation of SHR3-wk-old: 0.33 +/- 0.09% and SHR6-wk-old: 0.52 +/- 0.12% to DxSHR 3-wk-old: 1.02 +/- 0.2% and DxSHR 6-wk-old: 0.94 +/- 0.2% (P <0.01), in renal denervated rats. The current data suggest that neural pathways may play an instrumental role on renal sodium reabsorption as result of sustained sympathetic nervous system overexcitability.  相似文献   

11.
Dietary soy may attenuate the development of arterial hypertension. In addition, some soy-containing foods exhibit angiotensin-converting enzyme (ACE) inhibitory properties. Accordingly, we tested the hypothesis that ACE inhibition contributes to the antihypertensive effect of dietary soy. Mean arterial blood pressure (MAP) was recorded from conscious spontaneously hypertensive rats (SHR) at least 24 h after the implantation of catheters. Cumulative dose-response curves to intravenous angiotensin I (AI) (5-100 ng x kg(-1) x min(-1)) and angiotensin II (AII) (1-20 ng x kg(-1) x min(-1)) were constructed for male, sham-operated female, and ovariectomized female (OVX) SHR that were maintained on either casein or soy diets. The soy diet was associated with a significant reduction in baseline MAP in the OVX SHR (approximately 20 mmHg, 1 mmHg = 133.322 Pa). AI and AII infusions caused graded increases in MAP in all groups. However, there was no significant attenuation of the pressor responses to AI in the soy-fed SHR. Conversely, we observed a significant rightward displacement of the AII dose-response curves in the soy-fed sham-operated and OVX SHR. We conclude that ACE inhibition does not account for the antihypertensive effect of dietary soy in mature SHR.  相似文献   

12.
In a previous clinical study we have demonstrated a significantly lower baroreflex-mediated bradycardic response in young women compared with men. The present study determined whether sexual dimorphism in baroreflex sensitivity in young rats also covers the reflex tachycardic response. The study was then extended to test the hypothesis that an attenuated cardiac cholinergic component of the baroreflex heart rate response in females may account for the gender difference. Baroreflex sensitivity (BRS) was expressed as the regression coefficient of the reciprocal relationship between evoked changes in blood pressure and heart rate. BRS measured in conscious rats with phenylephrine (BRS(PE)) and nitroprusside (BRS(NP)) represented the reflex bradycardic and tachycardic responses, respectively. Female rats exhibited significantly lower BRS(PE) compared with male rats (-1.53+/-0.1 vs. -2.36+/-0.13 beats x min(-1) x mmHg(-1); p < 0.05) but similar BRS(NP) (-2.60+/-0.20 vs. -2.29+/-0.17 beats x min(-1) x mmHg(-1)). Blockade of cardiac muscarinic receptors with atropine methyl bromide elicited greater attenuation of BRS(PE) in male than in female rats (72+/-4.6 vs. 53+/-6.7% inhibition; p < 0.01) and abolished the gender difference. In male rats cardiac muscarinic blockade attenuated BRS(PE) significantly more than did cardiac beta-adrenergic receptor blockade with propranolol (72+/-4.6 vs. 43+/-2.7; p < 0.01), which suggests greater dependence of BRS(PE) on the parasympathetic component. In females, muscarinic and beta-adrenergic blockade elicited similar attenuation of BRS(PE). The findings suggest that (i) BRS is differentially influenced by gender; female rats exhibit substantially lower BRS(PE) but similar BRS(NP) compared with age-matched male rats and (ii) the sexual dimorphism in BRS(PE) results, at least partly, from a smaller increase in vagal outflow to the heart in response to baroreceptor activation.  相似文献   

13.
Animal studies suggest that prostanoids (i.e., such as prostacyclin) may sensitize or impair baroreceptor and/or baroreflex responsiveness depending on the site of administration and/or inhibition. We tested the hypothesis that acute inhibition of cyclooxygenase (COX), the rate-limiting enzyme in prostanoid synthesis, impairs baroreflex regulation of cardiac period (R-R interval) and muscle sympathetic nerve activity (MSNA) in humans and augments pressor reactivity. Baroreflex sensitivity (BRS) was determined at baseline (preinfusion) and 60 min after (postinfusion) intravenous infusion of a COX antagonist (ketorolac; 45 mg) (24 +/- 1 yr; n = 12) or saline (25 +/- 1 yr; n = 12). BRS was assessed by using the modified Oxford technique (bolus intravenous infusion of nitroprusside followed by phenylephrine). BRS was quantified as the slope of the linear portion of the 1) R-R interval-systolic blood pressure relation (cardiovagal BRS) and 2) MSNA-diastolic blood pressure relation (sympathetic BRS) during pharmacological changes in arterial blood pressure. Ketorolac did not alter cardiovagal (19.4 +/- 2.1 vs. 18.4 +/- 2.4 ms/mmHg preinfusion and postinfusion, respectively) or sympathetic BRS (-2.9 +/- 0.7 vs. -2.6 +/- 0.4 arbitrary units.beat(-1).mmHg(-1)) but significantly decreased a plasma biomarker of prostanoid generation (plasma thromboxane B2) by 53 +/- 11%. Cardiovagal BRS (21.3 +/- 3.8 vs. 21.2 +/- 3.0 ms/mmHg), sympathetic BRS (-3.4 +/- 0.3 vs. -3.2 +/- 0.2 arbitrary units.beat(-1).mmHg(-1)), and thromboxane B2 (change in -1 +/- 12%) were unchanged in the control (saline infusion) group. Pressor responses to steady-state incremental (0.5, 1.0, and 1.5 microg.kg(-1).min(-1)) infusion (5 min/dose) of phenylephrine were not altered by ketorolac (n = 8). Collectively, these data indicate that acute pharmacological antagonism of the COX enzyme does not impair BRS (cardiovagal or sympathetic) or augment pressor reactivity in healthy young adults.  相似文献   

14.
This study compared the baroreflex control of lumbar and renal sympathetic nerve activity (SNA) in conscious rats. Arterial pressure (AP) and lumbar and renal SNA were simultaneously recorded in six freely behaving rats. Pharmacological estimates of lumbar and renal sympathetic baroreflex sensitivity (BRS) were obtained by means of the sequential intravenous administration of sodium nitroprusside and phenylephrine. Sympathetic BRS was significantly (P < 0.05) lower for lumbar [3.0 +/- 0.4 normalized units (NU)/mmHg] than for renal (7.6 +/- 0.6 NU/mmHg) SNA. During a 219-min baseline period, spontaneous lumbar and renal BRS were continuously assessed by computing the gain of the transfer function relating AP and SNA at heart rate frequency over consecutive 61.4-s periods. The transfer gain was considered only when coherence between AP and SNA significantly differed from zero, which was verified in 99 +/- 1 and 96 +/- 3% of cases for lumbar and renal SNA, respectively. When averaged over the entire baseline period, spontaneous BRS was significantly (P < 0.05) lower for lumbar (1.3 +/- 0.2 NU/mmHg) than for renal (2.3 +/- 0.3 NU/mmHg) SNA. For both SNAs, spontaneous BRS showed marked fluctuations (variation coefficients were 26 +/- 2 and 28 +/- 2% for lumbar and renal SNA, respectively). These fluctuations were positively correlated in five of six rats (R = 0.44 +/- 0.06; n = 204 +/- 8; P < 0.0001). We conclude that in conscious rats, the baroreflex control of lumbar and renal SNA shows quantitative differences but is modulated in a mostly coordinated way.  相似文献   

15.
Nitric oxide levels are diminished in hypertensive patients, suggesting nitric oxide might have an important role to play in the development of hypertension. Chronic blockade of nitric oxide leads to hypertension that is sustained throughout the period of the blockade in baroreceptor-intact animals. It has been suggested that the sympathetic nervous system is involved in the chronic increase in blood pressure; however, the evidence is inconclusive. We measured renal sympathetic nerve activity and blood pressure via telemetry in rabbits over 7 days of nitric oxide blockade. Nitric oxide blockade via N(omega)-nitro-L-arginine methyl ester (L-NAME) in the drinking water (50 mg x kg(-1) x day(-1)) for 7 days caused a significant increase in arterial pressure (7 +/- 1 mmHg above control levels; P < 0.05). While the increase in blood pressure was associated with a decrease in heart rate (from 233 +/- 6 beats/min before the L-NAME to 202 +/- 6 beats/min on day 7), there was no change in renal sympathetic nerve activity (94 +/- 4 %baseline levels on day 2 and 96 +/- 5 %baseline levels on day 7 of L-NAME; baseline nerve activity levels were normalized to the maximum 2 s of nerve activity evoked by nasopharyngeal stimulation). The lack of change in renal sympathetic nerve activity during the L-NAME-induced hypertension indicates that the renal nerves do not mediate the increase in blood pressure in conscious rabbits.  相似文献   

16.
The role of baroreceptors, cardiopulmonary receptors, and renal nerves in the cardiovascular adjustments to volume expansion (VE) with 4% Ficoll (Pharmacia; 1% body wt, 0.4 ml/min) were studied in urethan-anesthetized rats. In control animals, VE produced a transitory increase in mean arterial pressure (MAP), which peaked at 10 min (17 +/- 4 mmHg) and increases in renal (128 +/- 6 and 169 +/- 19% of baseline at 10 and 40 min, respectively) and hindlimb vascular conductance (143 +/- 6 and 150 +/- 10%). These cardiovascular adjustments to VE were unaffected by bilateral vagotomy. After sinoaortic denervation, the increase in MAP induced by VE was greater than in control rats (30 +/- 4 mmHg). However, renal vasodilation in response to VE was blocked, whereas hindlimb vasodilation was similar to that observed in control rats. After unilateral renal denervation (ipsilateral to flow recording), the initial renal vasodilation was blocked. However, 40 min after VE, a significant renal vasodilation (125 +/- 4%) appeared. The hindlimb vasodilation and MAP responses were unaffected by renal denervation. These results demonstrate that the baroreceptor afferents are an essential component of cardiovascular adjustments to VE, especially in the control of renal vascular conductance. They also suggest that renal vasodilation induced by VE is mediated by neural and hormonal mechanisms.  相似文献   

17.
R Singh  M K Ticku 《Life sciences》1987,40(10):1017-1026
This study was conducted to investigate the effects of centrally administered baclofen on blood pressure and heart rate in conscious spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Administration of baclofen (1.0 microgram/kg) into the lateral cerebral ventricle (icv) produced an increase in mean arterial pressure (MAP) in both SHR and WKY rats. The increase in MAP was significantly lower in SHR (13 +/- 3 mmHg) when compared with WKY (27 +/- 5 mmHg). The changes in heart rate (HR) were variable, from no change to a very small increase and did not differ significantly between SHR and WKY rats. The ability of baclofen to interfere with baroreceptor reflexes was also tested in separate experiments. In SHR, icv injection of baclofen (1.0 microgram/kg) significantly suppressed the pressor response and bradycardia evoked by phenylephrine 3.0 micrograms/kg iv, whereas in WKY, the pressor and HR responses to similar injections of phenylephrine were not affected by icv baclofen. Similarly, baclofen treatment modified hypotensive response and reflex tachycardia induced by nitroprusside (10.0 micrograms/kg) iv in SHR but not in WKY rats. Administration of sympathetic ganglionic blocker hexamethonium (HEX; 25 mg/kg) iv produced an equivalent decrease in MAP between SHR and WKY following icv injection of baclofen (1.0 microgram/kg). These results suggest that the effects of baclofen on the baroreceptor reflexes in SHR may not be mediated by a change in peripheral sympathetic tone.  相似文献   

18.
The role of renal nerves in the effects of concomitant NO synthase and non-selective ET(A/)ET(B) receptor inhibition on renal function was investigated in conscious normotensive Wistar rats. NO synthase inhibition alone (10 mg/kg b. w. i.v. L-NAME) in sham-operated rats with intact renal nerves induced an increase in systolic, diastolic and mean arterial pressure, urine flow rate, sodium, chloride and calcium excretion (p<0.05). The effect of L-NAME was markedly reduced by bosentan (10 mg/kg b.w. i.v.) and the values of urine flow rate, sodium, chloride and calcium excretions returned to control level (p<0.05). L-NAME administration one week after a bilateral renal denervation increased blood pressure to a similar extent as in sham-operated rats but decreased urine flow rate (p<0.05) and did not change electrolyte excretion. ET(A/)ET(B) receptor inhibition with bosentan during NO synthase inhibition in the renal denervated rats did not produce changes in urine flow rate or electrolyte excretion. NO synthase inhibition as well as concurrent NO synthase and ET(A/)ET(B) receptor inhibition did not change clearance of inulin or paraaminohippuric acid in sham-operated or renal denervated rats. These results indicate that renal sympathetic nerves play an important modulatory role in NO and endothelin induced effects on renal excretory function.  相似文献   

19.
Animal studies suggest that acute and chronic aldosterone administration impairs baroreceptor/baroreflex responses. We tested the hypothesis that aldosterone impairs baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA, sympathetic BRS) in humans. Twenty-six young (25 +/- 1 yr old, mean +/- SE) adults were examined in this study. BRS was determined by using the modified Oxford technique (bolus infusion of nitroprusside, followed 60 s later by bolus infusion of phenylephrine) in triplicate before (Pre) and 30-min after (Post) beginning aldosterone (experimental, 12 pmol.kg(-1).min(-1); n = 10 subjects) or saline infusion (control; n = 10). BRS was quantified from the R-R interval-systolic blood pressure (BP) (cardiovagal BRS) and MSNA-diastolic BP (sympathetic BRS) relations. Aldosterone infusion increased serum aldosterone levels approximately fourfold (P < 0.05) and decreased (P < 0.05) cardiovagal (19.0 +/- 2.3 vs. 15.6 +/- 1.7 ms/mmHg Pre and Post, respectively) and sympathetic BRS [-4.4 +/- 0.4 vs. -3.0 +/- 0.4 arbitrary units (AU).beat(-1).mmHg(-1)]. In contrast, neither cardiovagal (19.3 +/- 3.3 vs. 20.2 +/- 3.3 ms/mmHg) nor sympathetic BRS (-3.8 +/- 0.5 vs. -3.6 +/- 0.5 AU.beat(-1).mmHg(-1)) were altered (Pre vs. Post) in the control group. BP, heart rate, and MSNA at rest were similar in experimental and control subjects before and after the intervention. Additionally, neural and cardiovascular responses to a cold pressor test and isometric handgrip to fatigue were unaffected by aldosterone infusion (n = 6 subjects). These data provide direct experimental support for the concept that aldosterone impairs baroreflex function (cardiovagal and sympathetic BRS) in humans. Therefore, aldosterone may be an important determinant/modulator of baroreflex function in humans.  相似文献   

20.
Conscious SHR and WKY rats were infused during 7 days with ANF (Arg 101-Tyr 126), 100 ng/hr/rat, by means of miniosmotic pumps and their basal blood pressure (BP), changes in sodium excretion and urinary catecholamines compared with those at the last day of the infusion. The SHR initial BP of 181 +/- 3 mmHg gradually declined to 137 +/- 5 mmHg. No significant change in blood pressure was observed in the ANF-infused WKY group. However, WKY rats exhibited an increased sodium excretion and urinary dopamine/norepinephrine ratio when compared to sham-infused rats. No such differences were observed in SHR. It is suggested that an ANF-induced withdrawal of the renal sympathetic tone permits the manifestation of its natriuretic action in WKY rats. When, however, a BP decrease predominates, as in SHR, this decrease results in a reflex sympathetic discharge with a renal sympathetic activity over-riding the ANF induced natriuresis seen in WKY rats. Secondary sympathetic responses to the ANF-induced BP decrease have to be thus taken into account when a dissociation between the hypotensive and natriuretic action of ANF is observed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号