首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic hybridization of two privileged drug scaffolds, pyrazolone on the one hand and pyrimidine nucleoside on the other, resulted in the generation of two novel 5-substituted pyrimidine nucleosides with potent in vitro antiviral activity against two representative orthopoxviruses, vaccinia virus and cowpox virus.  相似文献   

2.
An efficient route for synthesizing novel allylic and cyclopropanoid phosphonic acid nucleoside analogues is described. The condensation of the bromine derivatives 6 and 18 with nucleoside bases (A, U, T, C, G) under standard nucleophilic substitution and deprotection conditions, afforded the target phosphonic acid nucleoside analogues. These compounds were evaluated for their antiviral properties against various viruses. Cyclopropanoid phosphonic adenine nucleoside analogue 23 showed significant anti-HIV activity.  相似文献   

3.
1-beta-D-Arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU) and nine other antiherpesviral nucleoside analogues were compared for their potencies against four strains of varicella-zoster virus (VZV) on three different cell lines: HEL cells, Vero cells, and MS cells established from a human malignant schwannoma. In contrast to the activity against herpes simplex virus type 1 previously reported, BV-araU showed extremely marked antiviral activity against VZV even on Vero cells. ED50, 50% plaque reduction dose, of BV-araU for VZV was 0.20-3.1 and 0.14-0.63 ng/ml on Vero cells and on HEL cells, respectively. Potency of BV-araU on MS cells was similar to that on these cell lines. There was not significant variation in anti-VZV activities of other nucleoside analogues on these three different cell lines except a few combinations of VZV strain and test compound.  相似文献   

4.
Racemic synthesis of novel 2′,5′,5′-trifluoro-apiose nucleoside phosphonic acid analogs were performed as potent antiviral agents. Phosphonation was performed by direct displacement of triflate intermediate with diethyl (lithiodifluoromethyl) phosphonate to give the corresponding (α,α-difluoroalkyl) phosphonate. Condensation successfully proceeded from a glycosyl donor with persilylated bases to yield the nucleoside phosphonate analogs. Deprotection of diethyl phosphonates provided the target nucleoside analogs. An antiviral evaluation of the synthesized compounds against various viruses such as HIV, HSV-1, HSV-2, and HCMV revealed that the pyrimidine analogues have significant anti-HCMV activity.  相似文献   

5.
Lethal mutagenesis is an antiviral strategy that aims to extinguish viruses as a consequence of enhanced mutation rates during virus replication. The molecular mechanisms that underlie virus extinction by mutagenic nucleoside analogues are not well understood. When mutagenic agents and antiviral inhibitors are administered sequentially or in combination, interconnected and often conflicting selective constraints can influence the fate of the virus either towards survival through selection of mutagen-escape or inhibitor-escape mutants or towards extinction. Here we report a study involving the mutagenesis of foot-and-mouth disease virus (FMDV) by the nucleoside analogue ribavirin (R) and the effect of R-mediated mutagenesis on the selection of FMDV mutants resistant to the inhibitor of RNA replication, guanidine hydrochloride (GU). The results show that under comparable (and low) viral load, an inhibitory activity by GU could not substitute for an equivalent inhibitory activity by R in driving FMDV to extinction. Both the prior history of R mutagenesis and the viral population size influenced the selection of GU-escape mutants. A sufficiently low viral load allowed continued viral replication without selection of inhibitor-escape mutants, irrespective of the history of mutagenesis. These observations imply that reductions of viral load as a result of a mutagenic treatment may provide an opportunity either for immune-mediated clearing of a virus or for an alternative antiviral intervention, even if extinction is not initially achieved.  相似文献   

6.
Antiviral potencies against herpes simplex virus type 1 (HSV-1) of 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU) and ten other nucleoside analogues in human embryonic lung fibroblast (HEL) cells were compared with those in Vero cells. 5-Halogenovinylarabinosyluracils, highly active in HEL cells, were inactive against all three laboratory-stocked strains of HSV-1 but exerted moderate antiviral effects on three clinical isolates in Vero cells. The reduction in anti-HSV-1 potencies of other representative nucleoside analogues in Vero cells was much less than those of 5-halogenovinylarabinosyluracils. However, significant antiviral potencies of BV-araU against laboratory strains were observed in other human and monkey fibroblast cells including an immortalized cell line. Significant enhancement of antiviral activity of BV-araU against a laboratory strain and a clinical isolate was demonstrated in Vero cells by the addition of 0.1 microM aminopterin or FUdR, an inhibitor of thymidylate synthesis. The potentiated anti-HSV-1 activity in Vero cells was comparable to the potency in HEL cells without the inhibitor. These results suggested that high activity of thymidylate synthesis and a large thymidylate pool size in Vero cells seem to be related to loss of anti-HSV-1 potency of BV-araU. Original tissue type, species, and the immortality may not be responsible for the reduced antiviral activity of BV-araU in Vero cells.  相似文献   

7.
Methyl gallate (MG), methyl-3,4,5-trihydroxybenzoate, was highly active against herpes viruses as determined by plaque reduction assay. Herper simplex virus type 2, MS strain, was sensitive to MG at a mean 50% inhibitory concentration (IC50) of 0.224 g/ml in monkey kidney cells. MG was specific for herpes viruses with the relative sensitivity HSV-2>HSV-1>CMV. Two RNA viruses tested were significantly less sensitive to MG. The structural components of MG which modulate the anti-herpetic activity were identified by analysis of chemical analogues. Our structural analyses indicated that three hydroxyl groups were required but were not sufficient for the anti-herpetic action of MG. The presence and chain length of the alkyl ester were also important to the anti-herpetic activity of MG. Methyl gallate may interact with virus proteins and alter the adsorption and penetration of the virion.  相似文献   

8.
Orthopoxviruses include the prototypical vaccinia virus, the emerging infectious agent monkeypox virus, and the potential biothreat variola virus (the causative agent of smallpox). There is currently no FDA-approved drug for humans infected with orthopoxviruses. We screened a diversity-oriented synthesis library for new scaffolds with activity against vaccinia virus. This screen identified a nonnucleoside analog that blocked postreplicative intermediate and late gene expression. Viral genome replication was unaffected, and inhibition could be elicited late in infection and persisted upon drug removal. Sequencing of drug-resistant viruses revealed mutations predicted to be on the periphery of the highly conserved viral RNA polymerase large subunit. Consistent with this, the compound had broad-spectrum activity against orthopoxviruses in vitro. These findings indicate that novel chemical synthesis approaches are a potential source for new infectious disease therapeutics and identify a potentially promising candidate for development to treat orthopoxvirus-infected individuals.  相似文献   

9.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and -methenyl derivatives (A-5021 and synguanol) and the 6-membered D- and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5'-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

10.
Several guanosine analogues, i.e. acyclovir (and its oral prodrug valaciclovir), penciclovir (in its oral prodrug form, famciclovir) and ganciclovir, are widely used for the treatment of herpesvirus [i.e. herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2),varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV)] infections. In recent years, several new guanosine analogues have been developed, including the 3-membered cyclopropylmethyl and-methenyl derivatives (A-5021 and synguanol) and the 6-membered D-and L-cyclohexenyl derivatives. The activity of the acyclic/carbocyclic guanosine analogues has been determined against a wide spectrum of viruses, including the HSV-1, HSV-2, VZV, HCMV, and also human herpesviruses type 6 (HHV-6), type 7 (HHV-7) and type 8 (HHV-8), and hepatitis B virus (HBV). The new guanosine analogues (i.e. A-5021 and D- and L-cyclohexenyl G) were found to be particularly active against those viruses (HSV-1, HSV-2, VZV) that encode for a specific thymidine kinase (TK), suggesting that their antiviral activity (at least partially) depends on phosphorylation by the virus-induced TK. Marked antiviral activity was also noted with A-5021 against HHV-6 and with D- and L-cyclohexenyl G against HCMV and HBV. The antiviral activity of the acyclic/carbocyclic nucleoside analogues could be markedly potentiated by mycophenolic acid, a potent inhibitor of inosine 5′-monophosphate (IMP) dehydrogenase. The new carbocyclic guanosine analogues (i.e. A-5021 and D- andL-cyclohexenyl G) hold great promise, not only as antiviral agents for the treatment of herpesvirus infections, but also an antitumor agents for the combined gene therapy/chemotherapy of cancer, provided that (part of) the tumor cells have been transduced by the viral (HSV-1, VZV) TK gene.  相似文献   

11.
Simian varicella virus (SVV) and human varicella-zoster virus (VZV) are closely related viruses that share many structural and functional properties. 5-Substituted 2'-deoxyuridine derivatives (e.g., BVDU, BVaraU) and acyclic guanine nucleoside derivatives (i.e., ACV and GCV) show comparable antiviral efficacy against VZV and SVV in cell culture. In contrast, the novel bicyclic nucleoside analogues (BCNAs) are exquisitely inhibitory to VZV (EC50 in the lower nanomolar range) but completely inactive against SVV. The VZV-encoded thymidine kinase (TK) appeared to be essential for BCNA activation (phosphorylation) and anti-VZV activity. Also SVV TK is able to recognize the BCNAs as substrate, although with a different structure-affinity relationship. Thus, viral TK-catalyzed phosphorylation is necessary but not sufficient for the BCNAs to display antiviral activity. Our data suggest that the eventual target of the BCNAs against VZV is either absent in SVV or, alternatively, is insensitive for the (phosphorylated) BCNAs.  相似文献   

12.
Nucleotide and nucleoside-based analogue drugs are widely used for the treatment of both acute and chronic viral infections. These drugs inhibit viral replication due to one or more distinct mechanisms. It modifies the virus's genetic structure by reducing viral capacity in every replication cycle. Their clinical success has shown strong effectiveness against several viruses, including ebolavirus, hepatitis C virus, HIV, MERS, SARS-Cov, and the most recent emergent SARS-Cov2. In this review, seven different types of inhibitors have been selected that show broad-spectrum activity against RNA viruses. A detailed overview and mechanism of actionof both analogues are given, and the clinical perspectives are discussed. These inhibitors incorporated the novel SARS-CoV-2 RdRp, further terminating the polymerase activity with variable efficacy. The recent study provides a molecular basis for the inhibitory activity of virus RdRp using nucleotide and nucleoside analogues inhibitors. Furthermore, to identify those drugs that need more research and development to combat novel infections. Consequently, there is a pressing need to focus on present drugs by establishing their cell cultures. If their potencies were evidenced, then they would be explored in the future as potential therapeutics for novel outbreaks.  相似文献   

13.
Novel acyclic nucleoside analogues were designed and synthesized as open-chain analogues of neplanocin A. The coupling of the allylic bromide with purine bases using cesium carbonate afforded a series of novel acyclic nucleosides. The synthesized compounds Ia-II were evaluated for their antiviral activity against various viruses such as HIV HSV-1, HSV-2, and ECMV.  相似文献   

14.
Novel acyclic nucleoside analogues were designed and synthesized as open-chain analogues of neplanocin A. The coupling of the allylic bromide with pyrimidine bases using cesium carbonate afforded a series of novel acyclic nucleosides. The synthesized compounds 15-22 were evaluated for their antiviral activity against various viruses such as HIV, HSV-1, HSV-2, and HCMV.  相似文献   

15.
Thieno analogues of the potent and selective furo-pyrimidine anti-VZV nucleoside family bearing a p-alkylphenyl side chain have been synthesised and tested for their antiviral activity against Varicella-Zoster virus (VZV). While the alkyl chain analogues were shown to retain full antiviral activity against VZV, these new analogues did not when compared to their furo parent nucleosides.  相似文献   

16.
New 5-azole- and 5-oxime-substituted analogues of 2′-deoxyuridine are synthesized. The analogues with azole ring manifest low toxicities and antiherpetic activities on Vero cell culture, the imidazole derivative being the most active. The inhibitory effects of oximes of 5-formyl-deoxyuridine are comparable with those of the azole-containing nucleoside analogues, although their cytotoxicities are found to be higher; oxime of 5-formyldeoxyuridine is particularly toxic. The nucleoside analogues synthesized exhibit no marked activity on cell cultures infected with various variants of poxvirus.  相似文献   

17.
Electronic parameters of 1′,3 ′-oxygen play significant roles in steering the conformation of nucleoside phosphonic acid analogues. To investigate the relationship of two oxygen atoms with antiviral enhancement, novel 1′,3 ′-dioxolane 5 ′-deoxyphosphonic acid purine analogues were synthesized via de novo acyclic stereoselective route from acrolein and glycolic acid. The synthesized nucleoside phosphonic acid analogues 14 and 19 were subjected to antiviral screening against several viruses, such as HIV-1, HSV-1, HSV-2, and HCMV. The guanine analogue 19 exhibits in vitro anti-HIV-1 activity similar to that of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) in MT-4 cells.  相似文献   

18.
PCR fragments containing the fusion protein genes 129L of the ectromelia virus (EV) and A30L of the variola virus (VARV) were cloned in pQE32. The expression products, recombinant prA30L and pr129L, were isolated from Escherichia coli cell lysates by metal-chelate affinity chromatography. The recombinant proteins retained the capability of oligomerization, characteristic of their natural analogs. ELISA and immunoblotting were used to test 22 monoclonal antibodies (mAbs) to orthopoxviruses (19 mAbs to EV, 2 mAbs to the vaccinia virus (VACV), and 1 mAb to the cowpox virus (CPXV)) for interaction with prA30L, pr129L, and orthopoxviruses. Twelve species-specific epitopes were found in the EV fusion protein 129L and its recombinant analog. Ten cross-reacting epitopes were found in the EV, CPXV, and VACV fusion proteins. Of these, nine epitopes were present both in prA30L and in the VARV fusion protein. Five mAbs interacting with cross-reacting epitopes were capable of efficient neutralization of VACV; two of these mAbs neutralized VARV. It was demonstrated that there are species-specific epitopes in EV 129L and cross-reacting epitopes in the EV, VARV, CPXV, and VACV fusion proteins, including epitopes that induced synthesis of virus-neutralizing antibodies against VACV and VARV.  相似文献   

19.
A series of novel acyclic thymine nucleoside analogues were prepared by the Mitsunobu reaction from appropriately protected chiral triols. The enantiomeric triols were obtained from substituted γ-lactone acids, prepared by asymmetric oxidation of 3-substituted-1,2-cyclopentanediones. The cytotoxic activity of new analogues was evaluated on MCF-7 human breast cancer and HeLa cells, and antiviral activities on human immunodeficiency virus type 1 and hepatitis C virus models. The synthesized compounds revealed specific anti-retroviral activity and no cytotoxic side effects.  相似文献   

20.
As antiviral nucleosides containing a fluorine atom at 2′-position are endowed with increased stabilization of glycosyl bond, it was of interest to investigate the influence of three fluorine atoms at 2′- and 5′-positions of apiosyl nucleoside phosphonate analogues. Various pyrimidine and purine 2′,5′,5′-trifluoro-3′-hydroxy-apiose nucleoside phosphonic acid analogues were synthesized from 1,3-dihydroxyacetone. Electrophilic fluorination of lactone was performed using N-fluorodibenzenesulfonimide. Difluorophosphonation was performed by direct displacement of triflate intermediate with diethyl(lithiodifluoromethyl) phosphonate to give the corresponding (α,α-difluoroalkyl) phosphonate. Condensation successfully proceeded from a glycosyl donor with persilylated bases to yield nucleoside phosphonate analogues. Deprotection of diethyl phosphonates provided the final phosphonic acid sodium salts. The synthesized nucleoside analogues were subjected to antiviral screening against various viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号