首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously established a reverse genetic system for studying excision of the transposable element Ds1 in maize plants. Ds1 carried by the genome of maize streak virus (MSV) is introduced into maize plants by agroinfection. Excision of Ds1 from the MSV genome depends on the presence of an active Ac element in the recipient maize plants. With the purpose of exploiting MSV-Ds1 as vector for maize transformation, we studied different genes encoding the transposase (TPase) for their efficiency of activating Ds1 excision. These genes were inserted in the same T-DNA carrying MSV-Ds1 and introduced into maize plants by Agrobacterium-mediated transformation. We showed that the wild-type TPase transcribed by the 2 promoter produced much higher efficiency of Ds1 excision than that transcribed by the Ac promoter. In contrast to what had been observed in tobacco and petunia, the truncated TPase (103–807) lacking the amino-terminal 102 amino acids gave a much more reduced Ds1 excision efficiency than the wild-type TPase when both genes were transcribed by the 2 promoter.  相似文献   

2.
Summary We have previously shown that the maize transposable element Ds1 introduced into maize plants by agroinfection can be excised from the genome of geminivirus maize streak virus (MSV). Excision depended strictly on the presence of an active Ac element in the plants. In this study, the excision products or footprints left in the MSV genome after Ds1 excision were extensively characterized and the effects of flanking sequences on Ds1 excision were analysed. Most types of footprints obtained were comparable to those described for Ds1 excision in the maize genome, and could be explained by the models proposed for excision of plant transposable elements. In two revertants, however, some terminal sequences of the Ds1 element were found to have been left behind at the excision site. The finding of this novel type of Ds1 footprint indicated that gene conversion events occurred during and/or after Ds1 excision from the MSV genome. A partial deletion of one copy of the 8 by duplications flanking the Ds1 element had no effect on the frequency or on the types of footprints of Ds1 excision from the MSV genome. Thus, the duplicated 8 by sequences flanking the transposable element are not involved in Ds1 excision. These results, as well as a statistical analysis of the modifications of the bases flanking the Ds1 element after excision, are discussed in terms of excision models.  相似文献   

3.
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.  相似文献   

4.
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.  相似文献   

5.
6.
Two kinds of T-DNA constructs, I-RS/dAc-I-RS and Hm(R)Ds, carrying a non-autonomous transposable element of Ac of maize were introduced into rice plants by Agrobacterium-mediated gene transfer. Six transgenic rice plants identified as containing a single copy of the element were crossed with two transgenic rice plants carrying a gene for Ac transposase under the control of the cauliflower mosaic virus 35S promoter. In F2 progenies, excision of the element was detected by PCR analysis and re-integration of the element was investigated by Southern blot analysis. The frequency of the excision of the element was found to vary from 0 to 70% depending on the crossing combination. The frequency of the number of individual transposition events out of the total number of F2 plants with germinal excision was 44% in one crossing combination and 38% in the other. In the most efficient case, 10 plants with independent transposition were obtained out of the 49 F2 plants tested. Linkage analysis of the empty donor site and the transposed Ds-insertion site in F3 plants demonstrated that one of five Ds-insertion sites was not linked to the empty donor site. The transgenic rice obtained in this study can be used for functional genomics of rice.  相似文献   

7.
The geminivirus miscanthus streak virus (MiSV) was used as a gene vector to study the transposition of the maize Ds element in rice protoplasts. Efficient excision of the Ds from the MISV vector was observed only when the MiSV vector was allowed to replicate and the plasmid expressing the transposase gene encoded by Ac was co-transfected. Under the same condition, the Ds carrying a hygromycin phosphotransferase gene (Ds::HPT) was also efficiently excised. Hygromycin-resistant calli were obtained by culturing these transfected protoplasts in order to examine the transposition of the excised Ds::HPT into the rice genome. In five out of 16 calli examined, the Ds::HPT, but not the vector sequence, was integrated into the rice genome and 8 bp target site duplication typical of Ac/Ds transposition was generated. These results show that the Ds::HPT inserted in the MISV vector transposed directly into the rice genome. This demonstrates the direct transposition of a cloned plant transposable element into the plant genome. Implications of these finding are discussed.  相似文献   

8.
V. Gorbunova  A. A. Levy 《Genetics》1997,145(4):1161-1169
The maize Ac/Ds transposable elements are thought to transpose via a cut-and-paste mechanism, but the intermediates formed during transposition are still unknown. In this work we present evidence that circular Ac molecules are formed in plants containing actively transposing elements. In these circles, transposon ends are joined head-to-head. The sequence at the ends' junction is variable, containing small deletions or insertions. Circles containing deleted Ac ends are probably unable to successfully reintegrate. To test the ability of circles with intact transposon ends to integrate into the genome, an artificial Ds circle was constructed by cloning the joined ends of Ac into a plasmid carrying a plant selectable marker. When such a circular Ds was introduced into tobacco protoplasts in the presence of Ac-transposase, no efficient transposase-mediated integration was observed. Although a circular transposition intermediate cannot be ruled out, the findings of circles with deleted transposon ends and the absence of transposase-mediated integration of the circular Ds suggest that some of the joined-ends-carrying elements are not transposition intermediates, but rather abortive excision products. The formation of Ac circles might account for the previously described phenomenon of Ac-loss. The origin of Ac circles and the implications for models of Ac transposition are discussed.  相似文献   

9.
赵丁丁  乔中英  程孝  王建平  焦翠翠  孙丙耀 《遗传》2014,36(12):1249-1255
玉米转座元件Ac/Ds是hAT转座子家族的成员, 导入水稻基因组后具有转座活性, 尽管转座机制还不完全清楚, 但它们通常经保守的非复制型“剪切-粘贴”过程转座。研究表明, 在Ac编码的转座酶作用下, Ds从原位点切离后常优先重新插入到连锁位点。文章利用TAIL-PCR技术从水稻一个Ds插入突变体及其回复突变体中分离Ds侧翼序列, 结合生物信息学分析方法, 对Ds在突变体上插入位点、回复突变体内切离足迹和重新插入位点进行了分子鉴定。结果显示, 突变体中Ds从3号染色体切离后, 在原插入位点残留了8 bp足迹序列(CATCATGA), 引起Ds标记基因外显子和内含子数目增加, 从而影响基因结构。切离后的Ds重新插入回复突变体第2和第6号染色体上, 分别编码烟草胺氨基转移酶和衰老相关蛋白的2个基因的编码区。因此, 典型的“剪切-粘贴”机制不能完全解释Ds的转座行为, Ds转座存在“剪切-复制-粘贴”的特点。  相似文献   

10.
Specific binding of plant nuclear proteins to GGTAAA-like motifs in the terminal regions of the transposable elements Ac and Mu1 has been detected in several laboratories. However, the role of these proteins in transposition remains unknown. To test the hypothesis that this binding activity is necessary for transposition, we identified and mutagenized all the binding motifs within the Ds1 element. This analysis enabled us to define more precisely the requirements for binding of the host protein. We then tested the ability of the mutated elements to excise from the maize streak virus (MSV) genome. We found that mutated Ds1 elements that do not bind the host proteins, as determined by gel-shift competition assay, are still capable of undergoing excision in maize, although for one of the maize lines the rate of excision was reduced. Excision of mutated Ds1 elements generated typical excision footprints. These data indicate that binding of host protein(s) to the GGTAAA-like motifs is not essential for Ds1 excision; however, it may contribute to the efficiency of the process. Received: 30 September 1999 / Accepted: 17 January 2000  相似文献   

11.
The beta-glucuronidase reporter gene has been used to develop a sensitive assay for the excision of transposable elements introduced into transgenic plants. The reporter gene, inactivated by the insertion of the maize transposable element Activator (Ac) into the 5'-untranslated leader, was introduced into the genome of tobacco by Agrobacterium-mediated transformation. Reactivation of the beta-glucuronidase gene was detected in transgenic plants using a fluorometric or histochemical assay. Reactivation of the reporter gene was dependent on the presence of the transposase of Ac, and resulted from the excision of the Ac element. This assay, together with the improved methods for visualization, will provide a valuable and rapid method for studying the basic mechanism of transposition in plants and for developing modified transposable element systems suitable for gene tagging in transgenic plants.  相似文献   

12.
The maize Ac/Ds transposable element (TE) transposes by a "cut and paste" mechanism. Previous studies in maize showed that when the TE ends are in reversed orientation with respect to each other, alternative transposition reactions can occur resulting in large scale genome rearrangements including deletions and inversions. To test whether similar genome rearrangements can also occur in other plants, we studied the efficacy of such alternative transposition-mediated genome rearrangements in Arabidopsis. Here we present our analysis of 33 independent chromosome rearrangements. Transposition at the reversed ends Ds element can cause deletions over 1 Mbp, and inversions up to 2.4 Mbp in size. We identified additional rearrangements including a reciprocal translocation and a putative ring chromosome. Some of the deletions and inversions are germinally transmitted.  相似文献   

13.
14.
The maize Activator (Ac)/Dissociation (Ds) transposable element system has been used in a variety of plants for insertional mutagenesis. Ac/Ds elements can also generate genome rearrangements via alternative transposition reactions which involve the termini of closely linked transposons. Here, we introduced a transgene containing reverse-oriented Ac/Ds termini together with an Ac transposase gene into rice (Oryza sativa ssp. japonica cv. Nipponbare). Among the transgenic progeny, we identified and characterized 25 independent genome rearrangements at three different chromosomal loci. The rearrangements include chromosomal deletions and inversions and one translocation. Most of the deletions occurred within the T-DNA region, but two cases showed the loss of 72 kilobase pairs (kb) and 79 kb of rice genomic DNA flanking the transgene. In addition to deletions, we obtained chromosomal inversions ranging in size from less than 10 kb (within the transgene DNA) to over 1 million base pairs (Mb). For 11 inversions, we cloned and sequenced both inversion breakpoints; in all 11 cases, the inversion junctions contained the typical 8 base pairs (bp) Ac/Ds target site duplications, confirming their origin as transposition products. Together, our results indicate that alternative Ac/Ds transposition can be an efficient tool for functional genomics and chromosomal manipulation in rice.  相似文献   

15.
The development of a barley ( Hordeurn vulgare L.) transformation system made it possible to consider the use of maize Activator/Dissociation ( Ac/Ds ) transposable elements for gene tagging in transgenic barley plants. However, barley transformation is time-consuming, and therefore a simple transient assay for Ac/Ds activity in intact barley tissues was developed to test the components of a proposed gene tagging system, prior to their stable introduction into plants. In this assay, barley scutellar tissue is co-transformed with constructs containing the maize Ac transposase gene and an Escherichia coli uid A reporter gene ( Gus ), the expression of which is interrupted by a maize Ds element. In transformed barley scutellar cells, Ac transposase-mediated excision of the Ds element generates a functional Gus gene, leading to histochemically detectable GUS activity. Characterization of the excision products showed that they had a pattern of nucleotide deletions and/or transversions similar to that found in maize and other heterologous plant systems. In addition, although contrary to the situation observed in heterologous dicot systems, efficient Ds excision in barley, a heterologous monocot system, appears to be inversely associated with Ac copy number, a finding similar to the Ac dosage effects observed in maize. The transient assay was used to demonstrate functional transposase activity in barley callus lines stably transformed with an Ac transposase gene.  相似文献   

16.
In maize, the P1-vv allele specifies variegated pericarp and cob pigmentation, and contains an Ac transposable element inserted in the second intron of the P1-rr gene. Starting from P1-vv, we recovered a new allele, called P1-vv5145, which gives an extremely light variegated pericarp and cob phenotype. The P1-vv5145 allele contains an Ac element ( Ac5145) at the same position and in the same orientation as in the progenitor P1-vv allele; however, the P1-vv5145 allele has a 2-bp deletion which removes the last nucleotide (A) from the 3' end of the Ac element, and an adjacent flanking nucleotide (C) from the p1 intron. In crosses with a Ds tester stock, P1-vv5145 shows a normal ability to induce Ds transposition; however, Ac excision from P1-vv5145 is 3800-fold less frequent than from the progenitor P1-vv allele. Our results demonstrate that the alteration of the 3' terminal base strongly impairs Ac transposition. The P1-vv5145 allele thus provides a relatively stable source of Ac transposase for controlling Ds transposition in genetic experiments. In addition, we describe two further alleles ( P1-ww7B8, P1-ww9A146-3) that contain deletions of Ac and flanking p1 gene sequences. These latter deletions are larger and involve the 5' end of the the Ac element. A model is proposed to explain the formation of one-sided deletions as a consequence of Ac transposition during replication of the element.  相似文献   

17.
18.
The maize transposable element Activator (Ac) carries subterminal CpG-rich sequences which are essential for the transposition of the element. It has previously been shown that the methylation of certain sequences contained in this region can alter their ability to interact with the Ac-encoded protein. The novel hypothesis that the methylation of subterminal Ac sequences is required for transposition was tested. Approximately 150 bp of the 5' subterminal region of the Ac element was examined for the presence of 5-methylcytosines by the ligation-mediated polymerase chain reaction (LMPCR)-aided genomic sequencing method. The methylation status of 22 and 39 cytosines on either strand of the DNA were analysed in each of five different transgenic tobacco cultures carrying transposable Ac sequences. Ten micrograms of tobacco DNA were used for each base-specific cleavage reaction before amplification by LMPCR. All but one of the cytosines were unmethylated. Only a minor fraction of the Ac molecules was methylated at one cytosine residue. It is concluded that DNA methylation at the tested Ac sequences is not required for the transposability of Ac or Ds elements in tobacco cells.  相似文献   

19.
The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis . A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2 , are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT:: Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represent a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis , and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity.  相似文献   

20.
Abortive gap repair: underlying mechanism for Ds element formation.   总被引:6,自引:0,他引:6       下载免费PDF全文
The mechanism by which the maize autonomous Ac transposable element gives rise to nonautonomous Ds elements is largely unknown. Sequence analysis of native maize Ds elements indicates a complex chimeric structure formed through deletions of Ac sequences with or without insertions of Ac-unrelated sequence blocks. These blocks are often flanked by short stretches of reshuffled and duplicated Ac sequences. To better understand the mechanism leading to Ds formation, we designed an assay for detecting alterations in Ac using transgenic tobacco plants carrying a single copy of Ac. We found frequent de novo alterations in Ac which were excision rather than sequence dependent, occurring within Ac but not within an almost identical Ds element and not within a stable transposase-producing gene. The de novo DNA rearrangements consisted of internal deletions with breakpoints usually occurring at short repeats and, in some cases, of duplication of Ac sequences or insertion of Ac-unrelated fragments. The ancient maize Ds elements and the young Ds elements in transgenic tobacco showed similar rearrangements, suggesting that Ac-Ds elements evolve rapidly, more so than stable genes, through deletions, duplications, and reshuffling of their own sequences and through capturing of unrelated sequences. The data presented here suggest that abortive Ac-induced gap repair, through the synthesis-dependent strand-annealing pathway, is the underlying mechanism for Ds element formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号