首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pathological cardiac hypertrophy involves excessive protein synthesis, increased cardiac myocyte size and ultimately the development of heart failure. Thus, pathological cardiac hypertrophy is a major risk factor for many cardiovascular diseases and death in humans. Extensive research in the last decade has revealed that post‐translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O‐GlcNAcylation, methylation and acetylation, play important roles in pathological cardiac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy responses via the interaction, stability, degradation, cellular translocation and activation of receptors, adaptors and signal transduction events. These changes occur in response to pathological hypertrophy stimuli. In this review, we summarize the roles of PTMs in regulating the development of pathological cardiac hypertrophy. Furthermore, PTMs are discussed as potential targets for treating or preventing cardiac hypertrophy.  相似文献   

2.
3.
Molecular regulation of cardiac hypertrophy   总被引:1,自引:0,他引:1  
Heart failure is one of the leading causes of mortality in the western world and encompasses a wide spectrum of cardiac pathologies. When the heart experiences extended periods of elevated workload, it undergoes hypertrophic enlargement in response to the increased demand. Cardiovascular disease, such as that caused by myocardial infarction, obesity or drug abuse promotes cardiac myocyte hypertrophy and subsequent heart failure. A number of signalling modulators in the vasculature milieu are known to regulate heart mass including those that influence gene expression, apoptosis, cytokine release and growth factor signalling. Recent evidence using genetic and cellular models of cardiac hypertrophy suggests that pathological hypertrophy can be prevented or reversed and has promoted an enormous drive in drug discovery research aiming to identify novel and specific regulators of hypertrophy. In this review we describe the molecular characteristics of cardiac hypertrophy such as the aberrant re-expression of the fetal gene program. We discuss the various molecular pathways responsible for the co-ordinated control of the hypertrophic program including: natriuretic peptides, the adrenergic system, adhesion and cytoskeletal proteins, IL-6 cytokine family, MEK-ERK1/2 signalling, histone acetylation, calcium-mediated modulation and the exciting recent discovery of the role of microRNAs in controlling cardiac hypertrophy. Characterisation of the signalling pathways leading to cardiac hypertrophy has led to a wealth of knowledge about this condition both physiological and pathological. The challenge will be translating this knowledge into potential pharmacological therapies for the treatment of cardiac pathologies.  相似文献   

4.
Zheng M  Han QD  Xiao RP 《生理学报》2004,56(1):1-15
生理情况下,β肾上腺素受体(βAR)对心肌收缩和舒张活动起至关重要的作用;病理情况下,长期激动βAR可以诱发心肌细胞肥大、凋亡以及细胞坏死等心肌重塑性活动,从而参与了慢性心衰的发病过程。近十年以来,许多资料表明β1和β2肾上腺素受体亚型(β1AR和β2AR)共存于心脏中,且激动不同信号系统。短时间激动β1AR,使Gs蛋白-腺苷酸环化酶-环苷腺酸-蛋白激酶A(Gs-adenyly cyclase-cAMP-PKA)信号体系激活并广布于细胞内,而激动βAR则同时激活G1蛋白而产生空间及功能局限的cAMP信号;长时间激动β1AR和β2AR则对心肌细胞的命运产生不同影响:β1AR诱导细胞肥大和凋亡,β2AR促使细胞存活。β2AR的心肌保护作用是通过激活Gi蛋白-Gβγ-PI3K-Akt途径介导。但出乎意料,β1AR的心肌肥厚和凋亡效应并不依赖于经典的cAMP/PKA信号途径,而是激活钙,钙调素依赖性蛋白激酶Ⅱ(caMK Ⅱ)途径。用心肌特异性表达βAR亚型的转基因小鼠进行实验,进一步证实不同βAR亚型在调节心肌重塑和功能方面作用各异。βAR亚型作用不同的新观点不仅为β阻滞剂治疗慢性心衰提供了分子和细胞机制的依据,而且提出了选择性β1AR阻滞和β2AR激动联合治疗慢性心衰的新的治疗思路。  相似文献   

5.
Nitric oxide and the enigma of cardiac hypertrophy   总被引:6,自引:0,他引:6  
In pathological conditions associated with persistent increases in hemodynamic workload (old myocardial infarction, high blood pressure, valvular heart disease), a number of signalling pathways are activated in the heart, all of which promote hypertrophic growth of the heart, characterised at the cellular level by increases in individual cardiac myocyte size. Some of these pathways are required for a successful adaptation to cardiac injury. Other pathways are maladaptive, however, as they lead to progressive contractile dysfunction and heart failure. The free radical gas nitric oxide and natriuretic peptides, both of which are produced in the heart, have emerged as endogenous inhibitors of maladaptive hypertrophy signalling. Overall, it appears that cardiac hypertrophy is controlled by an interplay of pro- and antihypertrophic signalling networks. This delicate balance can tip towards adaptation or heart failure. In the future, patients living with cardiac disease may benefit from therapeutic strategies targeting maladaptive hypertrophy signalling pathways.  相似文献   

6.
7.
8.
Sustained cardiac pressure overload induces hypertrophy and pathological remodeling, frequently leading to heart failure. Genetically engineered hyperstimulation of guanosine 3',5'-cyclic monophosphate (cGMP) synthesis counters this response. Here, we show that blocking the intrinsic catabolism of cGMP with an oral phosphodiesterase-5A (PDE5A) inhibitor (sildenafil) suppresses chamber and myocyte hypertrophy, and improves in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction. Sildenafil also reverses pre-established hypertrophy induced by pressure load while restoring chamber function to normal. cGMP catabolism by PDE5A increases in pressure-loaded hearts, leading to activation of cGMP-dependent protein kinase with inhibition of PDE5A. PDE5A inhibition deactivates multiple hypertrophy signaling pathways triggered by pressure load (the calcineurin/NFAT, phosphoinositide-3 kinase (PI3K)/Akt, and ERK1/2 signaling pathways). But it does not suppress hypertrophy induced by overexpression of calcineurin in vitro or Akt in vivo, suggesting upstream targeting of these pathways. PDE5A inhibition may provide a new treatment strategy for cardiac hypertrophy and remodeling.  相似文献   

9.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a new promising target for prevention and treatment of cardiac hypertrophy and heart failure. There are three δ isoforms of CaMKII in the heart and previous studies focused primarily on δB and δC types. Here we report the δA isoform of CaMKII is also critically involved in cardiac hypertrophy. We found that δA was significantly upregulated in pathological cardiac hypertrophy in both neonatal and adult models. Upregulation of δA was accompanied by cell enlargement, sarcomere reorganization and reactivation of various hypertrophic cardiac genes including atrial natriuretic factor (ANF) and β-myocin heavy chain (β-MHC). Studies further indicated the pathological changes were largely blunted by silencing the δA gene and an underlying mechanism indicated selective interference with the HDAC4-MEF2 signaling pathway. These results provide new evidence for selective interfering cardiac hypertrophy and heart failure when CaMKII is considered as a therapeutic target.  相似文献   

10.
11.
12.
Cardiac hypertrophy is a physiological adaptive response of the heart to diverse pathophysiological stimuli. Initially, it may be adaptive to normalize wall stress and to preserve contractile performance. This adaptive process may gradually progress to dilated cardiomyopathy, fibrotic diseases, arrhythmia, heart failure and even sudden death. Although various molecular pathways responsible for the coordinated control of the hypertrophic program, little is known about their underlying molecular mechanisms. Very recently, increasing evidence showed that miRNAs are key modulators of both cardiovascular development and function, which govern the process of cardiac hypertrophy and heart failure. MicroRNAs (miRNAs) act in a complex functional network in which each single miRNAs might control thousands of distinct target genes, and each single protein-coding gene can be regulated by many different miRNAs. Identifying the roles of miRNAs, their target genes and signaling pathways in cardiac hypertrophy by bioinformatic analysis will provide more insight into the molecular mechanisms underlying this disease process. Currently, bioinformatics resource such as GO and KEGG was applied to describe the miRNAs target genes function and identify the mRNA interaction networks that are responsible for various cellular processes. It provides a useful approach to observe the function of microRNA in physiological and pathological conditions. In this review, we will give a discussion on the dysregulation of specific miRNAs in cardiac hypertrophy and signaling pathways linking the hypertrophy-regulating miRNAs to the pathological process of cardiac hypertrophy. Finally, we place special emphasis on the essential role of bioinformatics analysis to predict the target genes and miRNAs gene networks.  相似文献   

13.
Emerging data have shown that microRNAs (miRNAs) have important functions in the processes of cardiac hypertrophy and heart failure that occur during the postnatal period. Cardiac overexpression of miR-195 results in pathological cardiac growth and heart failure in transgenic mice. In the present study, we analyzed the roles of miR-195 in cardiomyocyte hypertrophy and found that miR-195 was greatly upregulated during isoprenaline-induced cardiomyocyte hypertrophy. By using mRNA microarray and molecular approach, we identified a novel putative target of miR-195 called high-mobility group A1 (HMGA1). Total mRNA microarray showed that HMGA1 was downregulated in primary cardiomyocytes that overexpressed miR-195. Using luciferase activity assay, we demonstrated that miR-195 interacts with the 3′-untranslated region of HMGA1 mRNA. Moreover, we showed that miR-195 in primary cardiomyocytes downregulates the expression of HMGA1 at the protein level. Taken together, our data demonstrated that miR-195 can negatively regulate a new target, HMGA1, which is involved in cardiomyocyte hypertrophy.  相似文献   

14.
Pathological cardiac hypertrophy is a major risk factor for developing heart failure, the leading cause of death in the world. Growth/differentiation factor 1 (GDF1), a transforming growth factor-β family member, is a regulator of cell growth and differentiation in both embryonic and adult tissues. Evidence from human and animal studies suggests that GDF1 may play an important role in cardiac physiology and pathology. However, a critical role for GDF1 in cardiac remodelling has not been investigated. Here, we performed gain-of-function and loss-of-function studies using cardiac-specific GDF1 knockout mice and transgenic mice to determine the role of GDF1 in pathological cardiac hypertrophy, which was induced by aortic banding (AB). The extent of cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. Our results demonstrated that cardiac specific GDF1 overexpression in the heart markedly attenuated cardiac hypertrophy, fibrosis, and cardiac dysfunction, whereas loss of GDF1 in cardiomyocytes exaggerated the pathological cardiac hypertrophy and dysfunction in response to pressure overload. Mechanistically, we revealed that the cardioprotective effect of GDF1 on cardiac remodeling was associated with the inhibition of the MEK–ERK1/2 and Smad signaling cascades. Collectively, our data suggest that GDF1 plays a protective role in cardiac remodeling via the negative regulation of the MEK–ERK1/2 and Smad signaling pathways.  相似文献   

15.
16.
Activation of the atrial natriuretic signaling pathway is intrinsic to the pathological responses associated with a range of cardiovascular diseases that stress the heart, especially those involved in sustained cardiac pressure overload which induces hypertrophy and the pathological remodeling that frequently leads to heart failure. We identify transient receptor potential cation channel, subfamily V, member 1, as a regulated molecular component, and therapeutic target of this signaling system. Data show that TRPV1 is a physical component of the natriuretic peptide A, cGMP, PKG signaling complex, interacting with the Natriuretic Peptide Receptor 1 (NPR1), and upon binding its ligand, Natriuretic Peptide A (NPPA, ANP) TRPV1 activation is subsequently suppressed through production of cGMP and PKG mediated phosphorylation of the TRPV1 channel. Further, inhibition of TRPV1, with orally delivered drugs, suppresses chamber and myocyte hypertrophy, and can longitudinally improve in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction, reversing pre-established hypertrophy induced by pressure load while restoring chamber function. TRPV1 is a physical and regulated component of the natriuretic peptide signaling system, and TRPV1 inhibition may provide a new treatment strategy for treating, and reversing the loss of function associated with cardiac hypertrophy and heart failure.  相似文献   

17.
Cardiac hypertrophy, a major determinant of heart failure, is associated with heat shock proteins (HSPs). HSP75 has been reported to protect against environmental stresses; however, its roles in cardiac hypertrophy remain unclear. Here, we generated cardiac-specific inducible HSP75 transgenic mice (TG) and cardiac hypertrophy was developed at 4 weeks after aortic banding in TG mice and wild-type littermates. The results revealed that overexpression of HSP75 prevented cardiac hypertrophy and fibrosis as assessed by heart weight/body weight ratio, heart weight/tibia length ratio, echocardiographic and hemodynamic parameters, cardiomyocyte width, left ventricular collagen volume, and gene expression of hypertrophic markers. Further studies showed that overexpression of HSP75 inhibited the activation of TAK/P38, JNK, and AKT signaling pathways. Thus, HSP75 likely reduces the hypertrophy and fibrosis induced by pressure overload through blocking TAK/P38, JNK, and AKT signaling pathways.  相似文献   

18.

Background

Cardiac hypertrophy and acute myocardial infarction (AMI) are two common heart diseases worldwide. However, research is needed into the exact pathogenesis and effective treatment strategies for these diseases. Recently, microRNAs (miRNAs) have been suggested to regulate the pathological pathways of heart disease, indicating a potential role in novel treatments.

Results

In our study, we constructed a miRNA-gene-drug network and analyzed its topological features. We also identified some significantly dysregulated miRNA-gene-drug triplets (MGDTs) in cardiac hypertrophy and AMI using a computational method. Then, we characterized the activity score profile features for MGDTs in cardiac hypertrophy and AMI. The functional analyses suggested that the genes in the network held special functions. We extracted an insulin-like growth factor 1 receptor-related subnetwork in cardiac hypertrophy and a vascular endothelial growth factor A-related subnetwork in AMI. Finally, we considered insulin-like growth factor 1 receptor and vascular endothelial growth factor A as two candidate drug targets by utilizing the cardiac hypertrophy and AMI pathways.

Conclusion

These results provide novel insights into the mechanisms and treatment of cardiac hypertrophy and AMI.
  相似文献   

19.
The plasma membrane calcium ATPases (PMCA) are a family of genes which extrude Ca2+ from the cell and are involved in the maintenance of intracellular free calcium levels and/or with Ca2+ signalling, depending on the cell type. In the cardiovascular system, Ca2+ is not only essential for contraction and relaxation but also has a vital role as a second messenger in signal transduction pathways. A complex array of mechanisms regulate intracellular free calcium levels in the heart and vasculature and a failure in these systems to maintain normal Ca2+ homeostasis has been linked to both heart failure and hypertension. This article focuses on the functions of PMCA, in particular isoform 4 (PMCA4), in the heart and vasculature and the reported links between PMCAs and contractile function, cardiac hypertrophy, cardiac rhythm and sudden cardiac death, and blood pressure control and hypertension. It is becoming clear that this family of calcium extrusion pumps have essential roles in both cardiovascular health and disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号