首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators.  相似文献   

2.
To investigate the extent of exposure and routes of Cry1Ac1 protein through the food chain, we collected Bt cabbage leaves and arthropods that occurred in the field during two trials. Protein levels in the transgenic leaves were significantly higher during the early stages of plant growth, ranging from 209.1 to 553.6?ng?g?1 in spring and from 208.2 to 402.8?ng?g?1 in autumn. Enzyme-linked immunosorbent assays were used to measure protein levels in the arthropods. Among the 16 taxa collected in the field, Cry1Ac1 was detected in the bodies of 10. Concentrations were higher in lepidopteran larvae than in the other taxa. In particular, we found a significant correlation between Cry1Ac1 protein levels in cabbage leaves and in Pieris rapae and Mamestra brassicae. Furthermore, this protein was detected in five out of nine taxa of predators (spiders and coleopterans) and parasitoids. These results will be useful as we identify the arthropods that are directly or indirectly exposed to Bt toxin within the food web and the degree to which they are exposed during the cultivation of Bt cabbage.  相似文献   

3.
Studies on the effect of Cry1Ab protein on hemocytes of the wolf spider Pardosa pseudoannulata revealed that Cry1Ab protein could accumulate in the four-instar and adult spiders via the food chain from transgenic rice expressing Cry1Ab protein through its prey brown planthoppers with approximate 20-time enrichment, but could not accumulate in hemolymph of the spider. The accumulated Cry1Ab had no significant effects on several elements of hemolymph including stored energy, calcium ion concentration and apoptosis rate of the hemocytes, indicating that Cry1Ab could not affect the hemocytes of P. pseudoannulata.  相似文献   

4.
There is increasing evidence that insecticidal transgenic crops can indirectly cause detrimental effects on arthropod predators or parasitoids when they prey on or parasitize sublethally affected herbivores. Our studies revealed that Chrysoperla carnea is negatively affected when fed Bt-susceptible but not Cry1Ac-resistant Helicoverpa armigera larvae that had fed Bt-transgenic cotton expressing Cry1Ac. This despite the fact that the predators ingested 3.5 times more Cry1Ac when consuming the resistant caterpillars. In order to detect potential differences in the nutrient composition of prey larvae, we evaluated the glycogen and lipid content plus the sugar and free amino acid content and composition of caterpillars fed non-Bt and Bt cotton. The only change in susceptible H. armigera larvae attributable to Bt cotton feeding were changes in sugar concentration and composition. In case of the Cry1Ac-resistant H. armigera strain, feeding on Bt cotton resulted in a reduced glycogen content in the caterpillars. The predators, however, appeared to compensate for the reduced carbohydrate content of the prey by increasing biomass uptake which caused an excess intake of the other analyzed nutritional compounds. Our study clearly proves that nutritional prey-quality factors other then the Bt protein underlie the observed negative effects when C. carnea larvae are fed with Bt cotton-fed prey. Possible factors were an altered sugar composition or fitness costs associated with the excess intake of other nutrients.  相似文献   

5.
取食转基因抗虫棉上的棉蚜对粉舞蛛存活和发育的影响   总被引:2,自引:0,他引:2  
本文以转双价基因棉花SGK321、棉蚜Aphis gossypii和粉舞蛛Alopecosa pulverulenta为对象,研究了捕食转基因植物上的植食性害虫对多食性捕食性天敌的影响。结果表明,粉舞蛛可以猎食棉蚜,但单独捕食棉蚜不足以长期维持若蛛的生存和发育; 与果蝇混合饲养,能显著提高若蛛存活率和体重。在猎物过量或数量不足的情况下,单独捕食转基因棉或常规棉上的棉蚜,若蛛的生存曲线和体重差异不显著。在猎物过量的条件下,用转基因棉上的棉蚜与果蝇混合饲养,若蛛的存活率显著高于用常规棉上的棉蚜与果蝇混合的处理; 但这两种处理下,若蛛的体重差异不显著。在猎物数量不足的情况下,用转基因棉或常规棉上的棉蚜与果蝇混合饲养,若蛛的存活率和体重差异都不显著。可见,转双价基因棉花SGK321上的棉蚜对粉舞蛛的存活和发育没有显著的不利影响。  相似文献   

6.
While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions.  相似文献   

7.
Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.  相似文献   

8.
Tian JC  Chen Y  Li ZL  Li K  Chen M  Peng YF  Hu C  Shelton AM  Ye GY 《PloS one》2012,7(4):e35164

Background

The commercial release of rice genetically engineered to express a Cry1Ab protein from Bacillus thuringiensis (Bt) for control of Lepidoptera in China is a subject of debate. One major point of the debate has focused on the ecological safety of Bt rice on nontarget organisms, especially predators and parasitoids that help control populations of insect pests.

Methodology/Principal Findings

A tritrophic bioassay was conducted to evaluate the potential impact of Cry1Ab-expressing rice on fitness parameters of a predaceous ground spider (Pardosa pseudoannulata (Bösenberg et Strand)) that had fed on Bt rice-fed brown planthopper (Nilaparvata lugens (Stål)) nymphs. Survival, development time and fecundity of this spider were not different when they were fed with Bt rice-fed or non-Bt rice-fed prey. Furthermore, ELISA and PCR gut assays, as well as a functional response trial, indicated that predation by P. pseudoannulata was not significantly different in Bt rice or non-Bt rice fields.

Conclusions/Significance

The transgenic Cry1Ab rice lines tested in this study had no adverse effects on the survival, developmental time and fecundity of P. pseudoannulata in the laboratory or on predation under field conditions. This suggests that this important predator would not be harmed if transgenic Cry1Ab rice were commercialized.  相似文献   

9.
Conservative biological control promotes the use of native natural enemies to limit the size and growth of pest populations. Although spiders constitute one of the most important groups of native predators in several crops, their trophic ecology remains largely unknown, especially for several generalist taxa. In laboratory, we assessed the predatory behaviour of a wandering spider (the wolf spider Lycosa thorelli (Keyserling, 1877) against several arthropods varying in size and trophic positions, all found in South American soybean and rice crops. As prey we used the bug Piezodorus guildinii (Westwood, 1837) as well as larvae and adults of the moth Spodoptera frugiperda (Smith, 1797), both being considered important pests in Uruguayan crops. We also used several non-pest arthropods as prey, sarcophagid flies, carabid beetles and wolf spiders. All prey were attacked in more or less high, although not statistically differing, proportions. However, carabids were not consumed, and bugs were consumed in significantly lower proportions than flies. A negative correlation was found between prey size and acceptance rate. Immobilization times were longer against larvae when compared to moths and flies, while predatory sequences were longer for bugs when compared to flies, moths and spiders. In addition, we found a positive effect of prey size on predatory sequence length and complexity. Our results confirm the ability of spiders to attack and feed upon prey with different morphologies, included well-defended arthropods, and their potential use as natural enemies of several pests in South American crops.  相似文献   

10.
The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies. However, using Cry protein susceptible hosts as prey often compromises such studies. To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda), that were resistant to Cry1Ac produced in Bt broccoli (T. ni), Cry1Ac/Cry2Ab produced in Bt cotton (T. ni), and Cry1F produced in Bt maize (S. frugiperda). Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewing Chrysoperla rufilabris. Fitness parameters (larval survival, development time, fecundity and egg hatch) of C. rufilabris were assessed over two generations. There were no differences in any of the fitness parameters regardless if C. rufilabris consumed prey (T. ni or S. frugiperda) that had consumed Bt or non-Bt plants. Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator. These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms.  相似文献   

11.
C. Ludy  A. Lang   《Biological Control》2006,38(3):314-324
Concerns have been raised that genetically modified Bt maize may harm non-target organisms, and there is a general call and need for a risk assessment of Bt maize. Spiders are important pest predators in agroecosystems and in maize, and can be exposed to the Bt toxin by herbivorous or pollen-collecting prey, by active Bt maize pollen feeding, and by ingesting their pollen-dusted webs. The foliage-dwelling spider fauna of Bt maize fields and adjacent margins was monitored and compared to non-transgenic maize fields. The study took place during the vegetation seasons of 2001–2003 in Bavaria, South Germany. Maize fields and adjacent nettle field margins were colonized by a typical spider assemblage, dominated by space-web spiders (Theridiidae and Linyphiidae). Abundance and species richness of spiders was higher in nettle margins than in maize fields. The proportion of hunting spiders tended to be higher in nettle margins, whereas space-web spiders tended to be more frequent in maize fields. Bt maize showed no consistent effect on individual numbers, species richness and guild structure of spiders in maize fields and adjacent nettle field margin strips. The spider abundance was higher in Bt treatments in 2003, whereas in 2001 and 2002 no significant differences were found. The results provide an important contribution for the implementation of case-specific and general surveillance of transgenic plants to be employed due to the regulations of the European Community.  相似文献   

12.
Research on non-target effects of transgenic crop plants has focused primarily on bitrophic, tritrophic and indirect effects of entomotoxins from Bacillus thuringiensis, but little work has considered intergenerational transfer of Cry proteins. This work reports a lepidopteran (Chlosyne lacinia) taking up a Bt entomotoxin when exposed to sublethal or low concentrations, transferring the entomotoxin to eggs, and having adverse effects on the first filial generation (F1) offspring. Two bioassays were conducted using a sublethal concentration of toxin (100.0 ng/µl Cry1Ac) for adults and a concentration equal to the LC10 (2.0 ng/µl Cry1Ac) for larvae. Cry1Ac is the most common entomotoxin expressed in Bt cotton in Brazil. In the adult diet bioassay there was no adverse effect on the parental generation (P0) adults, but the F1 larvae had higher mortality and longer development time compared to F1 larvae of parents that did not ingest Cry1Ac. For the 3rd instar larvae, there was no measurable effect on the P0 larvae, pupae and adults, but the F1 larvae had higher mortality and longer development time. Using chemiluminescent Western Blot, Cry1Ac was detected in F1 eggs laid by P0 butterflies from both bioassays. Our study indicates that, at least for this species and these experimental conditions, a ∼65 kDa insecticidal protein can be taken up and transferred to descendants where it can increase mortality and development time.  相似文献   

13.
A comprehensive assessment of risk to natural enemies from Bt-endotoxins from bioengineered crops must evaluate potential harm, as well as exposure pathways in non-target arthropod food webs. Despite being abundant generalist predators in agricultural fields, spiders (Araneae) have often been overlooked in the context of Bt crop risk assessment. Spiders and their prey were collected from transgenic corn fields expressing lepidopteran-specific Cry1Ab, coleopteran-specific Cry3Bb1, both proteins, and a non-transgenic near isoline. Spiders and prey were screened for Cry1Ab and Cry3Bb1 using qualitative enzyme-linked immunosorbent assay. Spiders from the three most common functional guilds, wandering sheet-tangle weavers, orb-weavers, and ground runners, tested positive for Cry1Ab and Cry3Bb1 proteins, with the highest per cent positive (8.0% and 8.3%) during and after anthesis. Laboratory feeding trials revealed that Bt-endotoxins were detectable in the Pardosa sp. (Lycosidae)-immature cricket-Bt corn pathway, but not in the Tennesseellum formica (Linyphiidae)-Collembola-Bt corn pathway. Additionally, direct consumption of transgenic corn pollen by Pardosa sp., T. formica, and Cyclosa turbinata (Araneidae) resulted in transfer of both Cry1Ab and Cry3Bb1 endotoxins. This study demonstrates that Bt-endotoxins are taken up by diverse members of a spider community via pollen and prey consumption and should be factored into future risk assessment.  相似文献   

14.
The ladybird beetle, Coleomegilla maculata (DeGeer), is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt). A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non-target organisms.  相似文献   

15.
The insecticidal toxin gene of Bacillus thuringiensis (Bt) is the most commonly used to develop insect‐resistant living modified organisms (LMOs). Insecticidal proteins produced in transgenic plants are released into the soil from the roots. In this study, possible effects of crystal 1Ac (Cry1Ac) protein on the soil microbial community in Korea were studied. To purify the insoluble Cry1Ac protein expressing Escherichia coli cells, we performed repeated sonication and PBS washing of the insoluble part and Cry1Ac protein was isolated in soluble form from the insoluble form using 100 mM Na2CO3 buffer (pH 9.6) without affinity bead. Also, size‐exclusion chromatography (SEC) was performed to increase the purity of the isolated Cry1Ac protein. The final protein product was identified as Cry1Ac protein through MALDI‐TOF. Insecticidal activity of Cry1Ac protein was demonstrated through the death of Plutella xylostella treated with Cry1Ac protein. Purely isolated Cry1Ac protein showed the same insecticidal activity as Cry1Ac expressed in LM crops. To investigate the change of soil microbial distribution using maize field soils treated with Cry1Ac protein, we isolated high quality metagenomic DNAs from buffer‐ and Cry1Ac protein‐treated soil groups, and analyzed the distribution of soil microorganisms through next‐generation sequencing (NGS) analysis. NGS results showed a similar microbial distribution in both buffer‐ and Cry1Ac protein‐treated samples. These results suggest a useful risk assessment method for domestic targeted insect and soil microorganisms using the Cry1Ac protein.  相似文献   

16.
Large amounts of genetically modified grains producing Bacillus thuringiensis (Bt) toxins have been imported to Korea. Therefore, the establishment of a risk assessment system for evaluating the potential impacts of imported Bt maize on non-target insects is important. Before evaluating the environmental impacts of Bt grains of unknown origin, Cry protein types must first be identified in test Bt grains. Cry toxins of imported Bt maize grains were analyzed by ELISA. Because all tested Bt maize grains contained Cry1A, Tenebrio molitor, a non-lepidopteran species, was selected as the non-target insect species. A domestic maize strain that showed few differences in nutritional composition compared to the Bt maize grain was used as the alternative non-Bt control. Slightly increased survival rate and head capsule width of Bt maize-fed T. molitor were observed, indicating that Bt maize has no sub-chronic adverse effects on T. molitor. An ELISA test revealed that concentrations of Cry1A toxins slowly increased in the body of T. molitor when the insects were fed Bt maize. Such substantial amounts of Cry toxins remaining in the alimentary tract of larvae indicate that Cry toxins can be transferred to the higher trophic level of predatory insects. However, no Cry proteins were detected in the hemolymph of the Bt maize-fed larvae, suggesting that there is little possibility of Cry toxin exposure via T. molitor to the higher endoparasitoids. The risk assessment strategies and protocols established in this study may also be applicable to other imported Bt crops in Korea.  相似文献   

17.
We present an idea that larvae of some Bacillus thuringiensis (Bt ) resistant populations of the diamondback moth, Plutella xylostella (L.), may be able to use Cry1Ac toxin derived from Bt as a supplementary food protein. Bt transgenic crops could therefore have unanticipated nutritionally favourable effects, increasing the fitness of resistant populations. This idea is discussed in the context of the evolution of resistance to Bt transgenic crops.  相似文献   

18.
1. Studies have shown that Cry proteins of the bacterium Bacillus thuringiensis expressed in transgenic plants can be acquired by nontarget herbivores and predators. A series of studies under field and controlled conditions was conducted to investigate the extent to which Cry1Ac protein from Bt transgenic cotton reaches the third trophic level and to measure the amount of protein that herbivores can acquire and expose to predators. 2. Levels of Cry1Ac in Bt cotton leaves decreased over the season. Among herbivores (four species), Cry1Ac was detected in lepidopteran larvae and the amount varied between species. Among predators (seven species), Cry1Ac was detected in Podisus maculiventris and Chrysoperla rufilabris. 3. In the greenhouse, only 14% of the Cry1Ac detected in the prey (Spodoptera exigua larvae) was subsequently found in the predator P. maculiventris. Detection of Cry1Ac protein in Orius insidiosus, Geocoris punctipes and Nabis roseipennis was probably limited by the amount of prey consumed that had fed on Bt cotton. 4. Purified Cry1Ac was acquired by the small predatory bug G. punctipes but at much higher concentration than found in plants or in lepidopteran larvae. 5. Bt protein was shown to move through prey to the third trophic level. Predatory heteropterans acquired Cry1Ac from prey fed Bt cotton, but acquisition was dependent on the concentration of Cry1Ac conveyed by the prey and the amount of prey consumed. The type and availability of prey capable of acquiring the protein, coupled with the generalist feeding behaviour of the most common predators in the cotton ecosystem, probably constrain the flow of Cry1Ac through trophic levels.  相似文献   

19.
The tiered approach to assessing ecological risk of insect-resistant transgenic crops assumes that lower tier laboratory studies, which expose surrogate non-target organisms to high doses of insecticidal proteins, can detect harmful effects that might be manifested in the field. To test this assumption, we performed meta-analyses comparing results for non-target invertebrates exposed to Bacillus thuringiensis (Bt) Cry proteins in laboratory studies with results derived from independent field studies examining effects on the abundance of non-target invertebrates. For Lepidopteran-active Cry proteins, laboratory studies correctly predicted the reduced field abundance of non-target Lepidoptera. However, laboratory studies incorporating tri-trophic interactions of Bt plants, herbivores and parasitoids were better correlated with the decreased field abundance of parasitoids than were direct-exposure assays. For predators, laboratory tri-trophic studies predicted reduced abundances that were not realized in field studies and thus overestimated ecological risk. Exposure to Coleopteran-active Cry proteins did not significantly reduce the laboratory survival or field abundance of any functional group examined. Our findings support the assumption that laboratory studies of transgenic insecticidal crops show effects that are either consistent with, or more conservative than, those found in field studies, with the important caveat that laboratory studies should explore all ecologically relevant routes of exposure.  相似文献   

20.
A laboratory experiment was used to quantify the effects of Bt maize on Drosophila melanogaster and Megaselia scalaris, representatives of two saprophagous dipteran families (Drosophilidae, Phoridae). Freshly hatched larvae were reared on a diet containing decaying maize leaves. Two transgenic maize varieties, expressing Cry3Bb1 or Cry1Ab, and their corresponding isolines were tested. In an additional treatment, a solution of pure Cry1Ab was added to the maize diet. According to quantitative ELISA analyses, all Bt diets and all larvae feeding on Bt maize contained low concentrations of Cry proteins but Cry proteins were not detected in adults, thus, predators of the larvae are exposed to Cry proteins whereas predators of adult flies are not. Highest concentrations were in larvae feeding on a maize diet supplemented with a Cry1Ab protein solution. The developmental time and fertility (offspring/female) were measured over four generations for D. melanogaster and over three generations for M. scalaris. Only a few significant differences were found between transgenic and non-transgenic treatments but the differences were not consistent and did not indicate any negative effects of Bt proteins. We conclude that D. melanogaster and M. scalaris larvae are not affected in the long term when feeding and developing on decaying Cry1Ab and Cry3Bb1 maize leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号