首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background aimsMucopolysaccharidosis type I (MPS I) is characterized by deficiency of the enzyme alpha-l-iduronidase (IDUA) and storage of glycosaminoglycans (GAG) in several tissues. Current available treatments present limitations, thus the search for new therapies. Encapsulation of recombinant cells within polymeric structures combines gene and cell therapy and is a promising approach for treating MPS I.MethodsWe produced alginate microcapsules containing baby hamster kidney (BHK) cells overexpressing IDUA and implanted these capsules in the peritoneum of MPS I mice.ResultsAn increase in serum and tissue IDUA activity was observed at early time-points, as well as a reduction in GAG storage; however, correction in the long term was only partially achieved, with a drop in the IDUA activity being observed a few weeks after the implant. Analysis of the capsules obtained from the peritoneum revealed inflammation and a pericapsular fibrotic process, which could be responsible for the reduction in IDUA levels observed in the long term. In addition, treated mice developed antibodies against the enzyme.ConclusionsThe results suggest that the encapsulation process is effective in the short term but improvements must be achieved in order to reduce the immune response and reach a stable correction.  相似文献   

2.
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked inherited disorder caused by a deficiency of the enzyme iduronate-2-sulfatase (IDS), which results in the lysosomal accumulation of glycosaminoglycans (GAG) such as dermatan and heparan sulfate. Here, we report the generation of IDS knockout mice, a model of human MPS II, and an analysis of the resulting phenotype. We also evaluated the effect of gene therapy with a pseudotyped, recombinant adeno-associated virus 2/8 vector encoding the human IDS gene (rAAV-hIDS) in IDS-deficient mice. IDS activity and GAG levels were measured in serum and tissues after therapy. Gene therapy completely restored IDS activity in plasma and tissue of the knockout mice. The rescued enzymatic activity completely cleared the accumulated GAGs in all the tissues analyzed. This model can be used to explore the therapeutic potential of IDS replacement and other strategies for the treatment of MPS II. Additionally, AAV2/8 vectors have promising future clinical applications for the treatment of patients with MPS II.  相似文献   

3.
Mucopolysaccharidosis type I (MPS I) is a progressive disorder caused by deficiency of α-L-iduronidase (IDUA), which leads to storage of heparan and dermatan sulphate. It is suggested that early enzyme replacement therapy (ERT) leads to better outcomes, although many patients are diagnosed late and don’t receive immediate treatment. This study aims to evaluate the effects of late onset ERT in a MPS I murine model. MPS I mice received treatment from 6 to 8 months of age (ERT 6–8mo) with 1.2mg laronidase/kg every 2 weeks and were compared to 8 months-old wild-type (Normal) and untreated animals (MPS I). ERT was effective in reducing urinary and visceral GAG to normal levels. Heart GAG levels and left ventricular (LV) shortening fraction were normalized but cardiac function was not completely improved. While no significant improvements were found on aortic wall width, treatment was able to significantly reduce heart valves thickening. High variability was found in behavior tests, with treated animals presenting intermediate results between normal and affected mice, without correlation with cerebral cortex GAG levels. Cathepsin D activity in cerebral cortex also did not correlate with behavior heterogeneity. All treated animals developed anti-laronidase antibodies but no correlation was found with any parameters analyzed. However, intermediary results from locomotion parameters analyzed are in accordance with intermediary levels of heart function, cathepsin D, activated glia and reduction of TNF-α expression in the cerebral cortex. In conclusion, even if started late, ERT can have beneficial effects on many aspects of the disease and should be considered whenever possible.  相似文献   

4.
Mucopolysaccharidosis type VII (MPS VII) is a recessively inherited lysosomal storage disorder caused due to β-glucuronidase (β-GUS) enzyme deficiency. Prominent clinical symptoms include hydrops fetalis, musculoskeletal deformities, neurodegeneration and hepatosplenomegaly leading to premature death in most cases. Apart from these, MPS VII is also characterized as adipose storage deficiency disorder although the underlying mechanism of this lean phenotype in the patients or β-GUS-deficient mice still remains a mystery. We addressed this issue using our recently developed Drosophila model of MPS VII (the CG2135-/- fly), which also exhibited a significant loss of body fat. We report here that the lean phenotype of the CG2135?/? larvae is due to fewer number of adipocytes, smaller lipid droplets and reduced adipogenesis. Our data further revealed that there is an abnormal accumulation of autophagosomes in the CG2135?/? larvae due to autophagosome-lysosome fusion defect. Decreased lysosome-mediated turnover also led to attenuated mTOR activity in the CG2135?/? larvae. Interestingly, treatment of the CG2135?/? larvae with mTOR stimulators, 3BDO or glucose, led to the restoration of mTOR activity with simultaneous correction of the autophagy defect and adipose storage deficiency. Our finding thus established a hitherto unknown mechanistic link between autophagy dysfunction, mTOR downregulation and reduced adiposity in MPS VII.  相似文献   

5.
BACKGROUND: Hunter syndrome, mucopolysaccharidosis type II (MPS II), is a X-linked inherited disorder caused by the deficiency of the enzyme iduronate-2-sulfatase (IDS), involved in the lysosomal catabolism of the glycosaminoglycans (GAG) dermatan and heparan sulfate. Such a deficiency leads to the intracellular accumulation of undegraded GAG and eventually to a progressive severe clinical pattern. Many attempts have been made in the last two to three decades to identify possible therapeutic strategies for the disorder, including gene therapy and somatic cell therapy. METHODS: In this study we evaluated the intraperitoneal implantation of allogeneic myoblasts over-expressing IDS, enclosed in alginate microcapsules, in the MPS II mouse model. Animals were monitored for 8 weeks post-implantation, during which plasma and tissue IDS levels, as well as tissue and urinary GAG contents, were measured. RESULTS AND CONCLUSIONS: Induced enzyme activity occurred both in the plasma and in the different tissues analyzed. A significant decrease in urinary undegraded GAG between the fourth and the sixth week of treatment was observed. Moreover, a biochemical reduction of GAG deposits was measured 8 weeks after treatment in the liver and kidney, on average 30 and 38%, respectively, while in the spleen GAG levels were almost normalized. Finally, the therapeutic effect was confirmed by histolochemical examination of the same tissues. Such effects were obtained following implantation of about 1.5 x 10(6) recombinant cells/animal. Taken together, these results represent a clear evidence of the therapeutic efficacy of this strategy in the MPS II mouse model, and encourage further evaluation of this approach for potential treatment of human beings.  相似文献   

6.
Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.  相似文献   

7.

Background

Mucopolysaccharidosis type IIIA (MPS IIIA) is the most common of the mucopolysaccharidoses. The disease is caused by a deficiency of the lysosomal enzyme sulphamidase and results in the storage of the glycosaminoglycan (GAG), heparan sulphate. MPS IIIA is characterised by widespread storage and urinary excretion of heparan sulphate, and a progressive and eventually profound neurological course. Gene therapy is one of the few avenues of treatment that hold promise of a sustainable treatment for this disorder.

Methods

The murine sulphamidase gene cDNA was cloned into a lentiviral vector and high-titre virus produced. Human MPS IIIA fibroblast cultures were transduced with the sulphamidase vector and analysed using molecular, enzymatic and metabolic assays. High-titre virus was intravenously injected into six 5-week old MPS IIIA mice. Three of these mice were pre-treated with hyperosmotic mannitol. The weight of animals was monitored and GAG content in urine samples was analysed by polyacrylamide gel electrophoresis.

Results

Transduction of cultured MPS IIIA fibroblasts with the sulphamidase gene corrected both the enzymatic and metabolic defects. Sulphamidase secreted by gene-corrected cells was able to cross correct untransduced MPS IIIA cells. Urinary GAG was found to be greatly reduced in samples from mice receiving the vector compared to untreated MPS IIIA controls. In addition, the weight of treated mice became progressively normalised over the 6-months post-treatment.

Conclusion

Lentiviral vectors appear promising vehicles for the development of gene therapy for MPS IIIA.  相似文献   

8.
Mucopolysaccharidosis type I (MPS I) results from a deficiency in the enzyme alpha-L-iduronidase (IDUA), and is characterized by skeletal abnormalities, hepatosplenomegaly and neurological dysfunction. In this study, we used a late generation lentiviral vector to evaluate the utility of this vector system for the transfer and expression of the human IDUA cDNA in MPS I fibroblasts. We observed that the level of enzyme expression in transduced cells was 1.5-fold the level found in normal cells; the expression persisted for at least two months. In addition, transduced MPS I fibroblasts were capable of clearing intracellular radiolabeled glycosaminoglycan (GAG). Pulse-chase experiments on transduced fibroblasts showed that the recombinant enzyme was synthesized as a 76-kDa precursor form and processed to a 66-kDa mature form; it was released from transduced cells and was endocytosed into a second population of untreated MPS I fibroblasts via a mannose 6-phosphate receptor. These results suggest that the lentiviral vector may be used for the delivery and expression of the IDUA gene to cells in vivo for treatment of MPS I.  相似文献   

9.
Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is a lysosomal storage disorder caused by deficiency of N-acetylgalactosamine-6-sulfatase (GALNS), an enzyme that degrades keratan sulfate (KS). Currently no therapy for MPS IVA is available. We produced recombinant human (rh)GALNS as a potential enzyme replacement therapy for MPS IVA. Chinese hamster ovary cells stably overexpressing GALNS and sulfatase modifying factor-1 were used to produce active (∼2 U/mg) and pure (≥97%) rhGALNS. The recombinant enzyme was phosphorylated and was dose-dependently taken up by mannose-6-phosphate receptor (Kuptake = 2.5 nM), thereby restoring enzyme activity in MPS IVA fibroblasts. In the absence of an animal model with a skeletal phenotype, we established chondrocytes isolated from two MPS IVA patients as a disease model in vitro. MPS IVA chondrocyte GALNS activity was not detectable and the cells exhibited KS storage up to 11-fold higher than unaffected chondrocytes. MPS IVA chondrocytes internalized rhGALNS into lysosomes, resulting in normalization of enzyme activity and decrease in KS storage. rhGALNS treatment also modulated gene expression, increasing expression of chondrogenic genes Collagen II, Collagen X, Aggrecan and Sox9 and decreasing abnormal expression of Collagen I. Intravenous administration of rhGALNS resulted in biodistribution throughout all layers of the heart valve and the entire thickness of the growth plate in wild-type mice. We show that enzyme replacement therapy with recombinant human GALNS results in clearance of keratan sulfate accumulation, and that such treatment ameliorates aberrant gene expression in human chondrocytes in vitro. Penetration of the therapeutic enzyme throughout poorly vascularized, but clinically relevant tissues, including growth plate cartilage and heart valve, as well as macrophages and hepatocytes in wild-type mouse, further supports development of rhGALNS as enzyme replacement therapy for MPS IVA.  相似文献   

10.
Sulphamidase     
Sulphamidase is one of four lysosomal proteins whose deficiency clinically manifests as Sanfilippo syndrome. Deficiency of sulphamidase results in the lysosomal storage of the glycosaminoglycan (GAG) heparan sulphate (HS) and is termed mucopolysaccharidosis type IIIA (MPS IIIA). Sulphamidase catalyses the hydrolysis of an N-linked sulphate from the nonreducing terminal glucosaminide residue of HS (Fig. 1). It is unique among the known lysosomal sulphatases involved in GAG degradation in that it is an N-sulphatase, all the others being O-sulphatases. Purification of sulphamidase from human liver has facilitated the amino-terminal sequencing of the protein and hence the isolation of cDNA and genomic clones for sulphamidase. This has in turn made possible a range of further studies aimed at better diagnosis, treatment and understanding of MPS IIIA.  相似文献   

11.
Mucopolysaccharidosis type IIIA (MPS IIIA) is an inherited neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Reduced activity of sulphamidase (N‐sulphoglucosamine sulphohydrolase; SGSH; EC 3.10.1.1) results in intracellular accumulation of heparan sulphate (HS), with the brain as the primary site of pathology. We have used a naturally occurring MPS IIIA mouse model to determine the effectiveness of SGSH replacement through the cerebrospinal fluid (CSF) to decrease neuropathology. This is a potential therapeutic option for patients with this disorder. Mice received intra‐CSF injections of recombinant human SGSH (30, 50 or 70 μg) fortnightly from 6 to 18 weeks of age, and the cumulative effect on neuropathology was examined and quantified. Anti‐SGSH antibodies detected in plasma at euthanasia did not appear to impact upon the health of the mice or the experimental outcome, with significant but region‐dependent and dose‐dependent reductions in an HS‐derived oligosaccharide observed in the brain and spinal cord using tandem mass spectrometry. SGSH infusion reduced the number of storage inclusions observed in the brain when visualized using electron microscopy, and this correlated with a significant decrease in the immunohistochemical staining of a lysosomal membrane marker. Reduced numbers of activated isolectin B4‐positive microglia and glial fibrillary acidic protein‐positive astrocytes were seen in many, but not all, brain regions. Significant reductions in the number of ubiquitin‐positive intracellular inclusions were also observed. These outcomes show the effectiveness of this method of enzyme delivery in reducing the spectrum of neuropathological changes in murine MPS IIIA brain.  相似文献   

12.
alpha-L-Iduronidase is a glycosyl hydrolase involved in the sequential degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate. A deficiency in alpha-L-iduronidase results in the lysosomal accumulation and urinary secretion of partially degraded glycosaminoglycans and is the cause of the lysosomal storage disorder mucopolysaccharidosis type I (MPS I; Hurler and Scheie syndromes; McKusick 25280). The premature stop codons Q70X and W402X are two of the most common alpha-l-iduronidase gene (IDUA) mutations accounting for up to 70% of MPS I disease alleles in some populations. Here, we have reported a new mutation, making a total of 15 different mutations that can cause premature IDUA stop codons and have investigated the biochemistry of these mutations. Natural stop codon read-through was dependent on the fidelity of the codon when evaluated at Q70X and W402X in CHO-K1 cells, but the three possible stop codons TAA, TAG and TGA, had different effects on mRNA stability and this effect was context dependent. In CHO-K1 cells expressing the Q70X and W402X mutations, the level of gentamicin-enhanced stop codon read-through was slightly less than the increment in activity caused by a lower fidelity stop codon. In this system, gentamicin had more effect on read-through for the TAA and TGA stop codons when compared to the TAG stop codon. In an MPS I patient study, premature TGA stop codons were associated with a slightly attenuated clinical phenotype, when compared to classical Hurler syndrome (e.g. W402X/W402X and Q70X/Q70X genotypes with TAG stop codons). Natural read-through of premature stop codons is a potential explanation for variable clinical phenotype in MPS I patients. Enhanced stop codon read-through is a potential treatment strategy for a large sub-group of MPS I patients.  相似文献   

13.
Mucopolysaccharidoses (MPS) are inherited metabolic diseases from the group of lysosomal storage disorders (LSD). They are caused by genetic defects resulting in the absence or severe deficiency in one of lysosmal hydrolases involved in degradation of glycosaminoglycans (GAG). Partially degraded GAGs are accumulated in lysosomes, causing dysfunction of cells, tissues and organs. Last years did bring some breakthrough discoveries, which were important to understand biochemical mechanisms of MPS appearance and course, as well as to develop therapeutic procedures for these inherited metabolic disorders.  相似文献   

14.
《Cytotherapy》2023,25(9):967-976
Background/AimsAlthough several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma.MethodshMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed.ResultsSerum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-β, interleukin (IL)-10, tumor necrosis factor-α–stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs.ConclusionsSerum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.  相似文献   

15.
Hundreds of different human skeletal disorders have been characterized at molecular level and a growing number of resembling dysplasias with orthologous genetic defects are being reported in dogs. This study describes a novel genetic defect in the Brazilian Terrier breed causing a congenital skeletal dysplasia. Affected puppies presented severe skeletal deformities observable within the first month of life. Clinical characterization using radiographic and histological methods identified delayed ossification and spondyloepiphyseal dysplasia. Pedigree analysis suggested an autosomal recessive disorder, and we performed a genome-wide association study to map the disease locus using Illumina’s 22K SNP chip arrays in seven cases and eleven controls. A single association was observed near the centromeric end of chromosome 6 with a genome-wide significance after permutation (pgenome  = 0.033). The affected dogs shared a 13-Mb homozygous region including over 200 genes. A targeted next-generation sequencing of the entire locus revealed a fully segregating missense mutation (c.866C>T) causing a pathogenic p.P289L change in a conserved functional domain of β-glucuronidase (GUSB). The mutation was confirmed in a population of 202 Brazilian terriers (p = 7,71×10−29). GUSB defects cause mucopolysaccharidosis VII (MPS VII) in several species and define the skeletal syndrome in Brazilian Terriers. Our results provide new information about the correlation of the GUSB genotype to phenotype and establish a novel canine model for MPS VII. Currently, MPS VII lacks an efficient treatment and this model could be utilized for the development and validation of therapeutic methods for better treatment of MPS VII patients. Finally, since almost one third of the Brazilian terrier population carries the mutation, breeders will benefit from a genetic test to eradicate the detrimental disease from the breed.  相似文献   

16.
BackgroundUlcerative colitis (UC) is a chronic relapsing inflammatory disease that markedly elevates the risk of colon cancers and results in disability. The disrupted immune homeostasis has been recognized as a predominant player in the pathogenesis of UC. However, the overall remission rate of current therapies based on immunoregulation is still unsatisfactory. Si-Ni-San (SNS) has been found effective in relieving UC through thousands of years of clinical practice, yet the specific mechanisms of the protective effect of SNS were not fully elucidated.PurposeWe aim to investigate the therapeutic effects of SNS against the development of chronic colitis and the underlying mechanisms.MethodsWe established a DSS-induced chronic experimental colitis mouse model to evaluate the effect of SNS. RNA-sequencing, bioinformatic analysis, and in vitro studies were performed to investigate the underlying mechanisms.ResultsOur data demonstrated that SNS significantly ameliorated chronic experimental colitis via inhibiting the expression of genes associated with inflammatory responses. Interestingly, SNS significantly suppressed DSS-induced type I interferon (IFN) responses instead of directly downregulating the production of pro-inflammatory cytokines, such as Il-6. In vitro study further found that SNS selectively inhibited STING and RIG-I pathway-induced type I IFN responses by modulating TBK1- and IRF3-dependent signaling transduction. SNS also suppressed the expression of IFN-stimulated genes by directly inhibiting STAT1 and STAT2 activation.ConclusionOur study not only provides novel insights into the pathogenic role of type I IFN responses in colitis but also suggested that SNS or bioactive compounds derived from SNS may serve as novel therapeutic strategies for the treatment of UC via interfering type I IFN-mediated inflammation.  相似文献   

17.
BackgroundCurrent tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential.MethodsPorcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically.ResultsHuman chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions.ConclusionsSynoviocyte-derived matrix supports enhanced expansion of human chondrocytes such that the chondrocytes are maintained in a state from which they can re-differentiate into a cartilage phenotype after significantly more population doublings. Also, low oxygen tension supports GAG, but not collagen, accumulation. These findings are a step towards the production of a more functional, tissue engineered cartilage.  相似文献   

18.
Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomal recessive disease that occurs due to a deficiency of heparan sulfate sulfamidase (SGSH). The deficiency of SGSH results in the lysosomal accumulation and urinary excretion of the glycosaminoglycan heparan sulfate. The clinical severity of MPS IIIA is predominantly characterized by severe central nervous system degeneration. Naturally occurring MPS IIIA has recently been described in New Zealand Huntaway dogs, with similar disease progression and biochemical characteristics observed in severely affected MPS IIIA patients. Here, we identify the disease-causing mutation in the MPS IIIA Huntaway dog as 708-709insC. The frequency of the 708-709insC mutation in a sample group of 203 New Zealand Huntaway dogs was determined to be 3.8%. The identification of the 708-709insC mutation will permit the identification of heterozygous carriers as an initial step toward establishing a breeding colony of MPS IIIA dogs for the study of various therapeutic strategies targeted to the central nervous system.  相似文献   

19.
BACKGROUND: The Sleeping Beauty (SB) transposon system is a non-viral vector system that can integrate precise sequences into chromosomes. We evaluated the SB transposon system as a tool for gene therapy of mucopolysaccharidosis (MPS) types I and VII. METHODS: We constructed SB transposon plasmids for high-level expression of human beta-glucuronidase (hGUSB) or alpha-L-iduronidase (hIDUA). Plasmids were delivered with and without SB transposase to mouse liver by rapid, high-volume tail-vein injection. We studied the duration of expressed therapeutic enzyme activity, transgene presence by PCR, lysosomal pathology by toluidine blue staining and cell-mediated immune response histologically and by immunohistochemical staining. RESULTS: Transgene frequency, distribution of transgene and enzyme expression in liver and the level of transgenic enzyme required for amelioration of lysosomal pathology were estimated in MPS I and VII mice. Without immunomodulation, initial GUSB and IDUA activities in plasma reached > 100-fold of wild-type (WT) levels but fell to background within 4 weeks post-injection. In immunomodulated transposon-treated MPS I mice plasma IDUA persisted for over 3 months at up to 100-fold WT activity in one-third of MPS I mice, which was sufficient to reverse lysosomal pathology in the liver and, partially, in distant organs. Histological and immunohistochemical examination of liver sections in IDUA transposon-treated WT mice revealed inflammation 10 days post-injection consisting predominantly of mononuclear cells, some of which were CD4- or CD8-positive. CONCLUSIONS: Our results demonstrate the feasibility of achieving prolonged expression of lysosomal enzymes in the liver and reversing MPS disease in adult mice with a single dose of therapeutic SB transposons.  相似文献   

20.
Mucopolysaccharidoses (MPS) are a group of genetic disorders belonging to lysosomal storage diseases. They are caused by genetic defects leading to a lack or severe deficiency of activity of one of lysosomal hydrolases involved in degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate in lysosomes, which results in dysfunctions of cells, tissues, and organs. Until recently, it was assumed that GAG accumulation in cells is the major, if not the only, mechanism of pathogenesis in MPS, as GAGs may be a physical ballast for lysosomes causing inefficiency of cells due to a large amount of a stored material. However, recent reports suggest that in MPS cells there are changes in many different processes, which might be even more important for pathogenesis than lysosomal accumulation of GAGs per se. Moreover, there are many recently published results indicating that lysosomes not only are responsible for degradation of various macromolecules, but also play crucial roles in the regulation of cellular metabolism. Therefore, it appears plausible that previous failures in treatment of MPS (i.e., possibility to correct only some symptoms and slowing down of the disease rather than fully effective management of MPS) might be caused by underestimation of changes in cellular processes and concentration solely on decreasing GAG levels in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号