首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to investigate the effect of HIF1α on Foxp3 expression in CD4+CD25? T lymphocytes. CD4+CD25? T lymphocytes were sorted from PBMC using a CD4+CD25+ regulatory T cell isolation kit. Lentivirus containing lentiviral vector that overexpressed HIF1α (HIF‐lenti) and those containing empty expression vector (control‐lenti) were produced. Meanwhile, lentivirus that contained lentiviral vector that suppressed HIF1α expression (siHIF‐lenti) and those containing control vector (sicontrol‐lenti) were also generated. The sorted CD4+CD25? T lymphocytes were infected with HIF‐lenti, control‐lenti, siHIF‐lenti, and sicontrol‐lenti, respectively. Approximately 72 hr after transduction, real‐time PCR and Western blot were carried out to analyze the RNA and protein expression level of HIF1α and Foxp3. CD4+CD25? T lymphocytes cultured under 21% O2, 5% CO2 (normoxia) and 1% O2, 5% CO2 (hypoxia) were used as control. Our results showed that overexpression of HIF1α increased both mRNA and protein expression of Foxp3 and, meanwhile, suppression of HIF1α expression by RNAi could reverse high Foxp3 expression in CD4+CD25? T lymphocytes caused by hypoxic culture. These results suggested that hypoxia could stimulate Foxp3 expression by increasing HIF1α expression in CD4+ T lymphocytes which may promote CD4+ T lymphocytes to convert to Treg.
  相似文献   

2.
CD34+ hematopoietic stem/progenitor cells (HSPCs) are vasculogenic and hypoxia is a strong stimulus for the vasoreparative functions of these cells. Angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1–7)/Mas receptor (MasR) pathway stimulates vasoprotective functions of CD34+ cells. This study tested if ACE2 and MasR are involved in the hypoxic stimulation of CD34+ cells. Cells were isolated from circulating mononuclear cells derived from healthy subjects (n = 46) and were exposed to normoxia (20% O2) or hypoxia (1% O2). Luciferase reporter assays were carried out in cells transduced with lentivirus carrying ACE2- or MasR- or a scramble-3′-untranslated region gene with a firefly luciferase reporter. Expressions or activities of ACE, angiotensin receptor Type 1 (AT1R), ACE2, and MasR were determined. In vitro observations were verified in HSPCs derived from mice undergoing hindlimb ischemia (HLI). In vitro exposure to hypoxia-increased proliferation and migration of CD34+ cells in basal conditions or in response to vascular endothelial growth factor (VEGF) or stromal-derived factor 1α (SDF) compared with normoxia. Expression of ACE2 or MasR was increased relative to normoxia while ACE or AT1R expressions were unaltered. Luciferase activity was increased by hypoxia in cells transfected with the luciferase reporter plasmids coding for the ACE2- or MasR promoters relatively to the control. The effects of hypoxia were mimicked by VEGF or SDF under normoxia. Hypoxia-induced ADAM17-dependent shedding of functional ACE2 fragments. In mice undergoing HLI, increased expression/activity of ACE2 and MasR were observed in the circulating HSPCs. This study provides compelling evidence for the hypoxic upregulation of ACE2 and MasR in CD34+ cells, which likely contributes to vascular repair.  相似文献   

3.
SARS-CoV-2 vaccinations have greatly reduced COVID-19 cases, but we must continue to develop our understanding of the nature of the disease and its effects on human immunity. Previously, we suggested that a dysregulated STAT3 pathway following SARS-Co-2 infection ultimately leads to PAI-1 activation and cascades of pathologies. The major COVID-19-associated metabolic risks (old age, hypertension, cardiovascular diseases, diabetes, and obesity) share high PAI-1 levels and could predispose certain groups to severe COVID-19 complications. In this review article, we describe the common metabolic profile that is shared between all of these high-risk groups and COVID-19. This profile not only involves high levels of PAI-1 and STAT3 as previously described, but also includes low levels of glutamine and NAD+, coupled with overproduction of hyaluronan (HA). SARS-CoV-2 infection exacerbates this metabolic imbalance and predisposes these patients to the severe pathophysiologies of COVID-19, including the involvement of NETs (neutrophil extracellular traps) and HA overproduction in the lung. While hyperinflammation due to proinflammatory cytokine overproduction has been frequently documented, it is recently recognized that the immune response is markedly suppressed in some cases by the expansion and activity of MDSCs (myeloid-derived suppressor cells) and FoxP3+ Tregs (regulatory T cells). The metabolomics profiles of severe COVID-19 patients and patients with advanced cancer are similar, and in high-risk patients, SARS-CoV-2 infection leads to aberrant STAT3 activation, which promotes a cancer-like metabolism. We propose that glutamine deficiency and overproduced HA is the central metabolic characteristic of COVID-19 and its high-risk groups. We suggest the usage of glutamine supplementation and the repurposing of cancer drugs to prevent the development of severe COVID-19 pneumonia.Subject terms: Signal transduction, Microbiology  相似文献   

4.
The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni+-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors.  相似文献   

5.

Background

The aim of this study was to investigate gene transfer to human umbilical cord blood (CB) CD34+/CD38low and NOD/SCID repopulating cells using oncoretroviral vectors and to compare the transduction efficiency using three different viral envelopes.

Methods

CB cells were transduced on Retronectin using an MSCV‐based vector with the gene for GFP (MGIN), which was packaged into three different cell lines giving different envelopes: PG13‐MGIN (GALV), 293GPG‐MGIN (VSV‐G) or AM12‐MGIN (amphotropic).

Results

Sorted CD34+/CD38low cells were efficiently transduced after 3 days of cytokine stimulation and the percentage of GFP‐positive cells was 61.8±6.6% (PG13‐MGIN), 26.9±3.5% (293GPG‐MGIN), and 39.3±4.8% (AM12‐MGIN). For transplantation experiments, CD34+ cells were pre‐stimulated for 2 days before transduction on Retronectin preloaded with vector and with the addition of 1/10th volume of viral supernatant on day 3. On day 4, the expanded equivalent of 2.5×105 cells was injected into irradiated NOD/SCID mice. All three pseudotypes transduced NOD/SCID repopulating cells (SRCs) equally well in the presence of serum, but engraftment was reduced when compared with freshly thawed cells. Simultaneous transduction with all three vector pseudotypes increased the gene transfer efficiency to SRCs but engraftment was significantly impaired. There were difficulties in producing amphotropic vectors at high titers in serum‐free medium and transduction of CD34+ cells using VSV‐G‐pseudotyped vectors under serum‐free conditions was very inefficient. In contrast, transduction with PG13‐MGIN under serum‐free conditions resulted in the maintenance of SRCs during transduction, high levels of engraftment (29.3±6.6%), and efficient gene transfer to SRCs (46.2±4.8%).

Conclusions

The best conditions for transduction and engraftment of CB SRCs were obtained with GALV‐pseudotyped vectors using serum‐free conditions. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

6.
7.
8.
Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.  相似文献   

9.
Abstract: Uptake and metabolism of glutamate was studied in the C-6 glioma cell line grown in the absence or presence of dibutyryl cyclic AMP (dbcAMP). Glutamate and aspartate uptake were competitive in cells grown under both conditions. Increased [K+] in the medium caused a significant decrease in the uptake of both amino acids. A small part of this decrease (<25%) was due to an enhanced efflux of tissue amino acid. The effects of increased [K+] were observed whether or not the [Na+] in the medium was concomitantly decreased. In cells grown in the presence of 1 mM dbcAMP for 48 h, glutamate uptake and metabolism were altered. Tissue levels of glutamate, aspartate, glutamine, GABA, and alanine were generally less in treated than in naive cells. When incubated with 50 μM [U-14C]glutamate, there was significantly less incorporation of radioactivity into treated cells with time, resulting in greatly lowered specific radioactivities of glutamate, aspartate, and GABA. However, the rate of labeling of glutamine was greatly increased; this was consistent with the previously observed doubling in glutamine synthetase activity in dbcAMP-treated C-6 cells. Tissue glutamate decarboxylase activity was halved in treated cells, accounting for the large decrease in GABA labeling. The metabolic data suggested a decreased uptake of exogenous glutamate; in studies on initial rates of uptake, the Vmax of high-affinity glutamate uptake was decreased by 40%. This decrease was of the same order of magnitude as that observed in the metabolic experiments. Thus, in this glial model, both rapid, acute changes and slower, long-term changes in neuroactive amino acid metabolism were observed. Each of these conditions mimics a stimulus of neuronal origin, and the resulting changes could modulate extrasynaptic activity of neuroactive amino acids.  相似文献   

10.
11.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

12.
Notch signalling is critical for haemopoietic stem cell (HSC) self-renewal and survival. The role of Notch signalling has been reported recently in chronic myeloid leukaemia (CML) – a stem cell disease characterized by BCR-ABL tyrosine kinase activation. Therefore, we studied the relationship between BCR-ABL and Notch signalling and assessed the expression patterns of Notch and its downstream target Hes1 in CD34+ stem and progenitor cells from chronic-phase CML patients and bone marrow (BM) from normal subjects (NBM). We found significant upregulation (p<0.05) of Notch1, Notch2 and Hes1 on the most primitive CD34+Thy+ subset of CML CD34+ cells suggesting that active Notch signalling in CML primitive progenitors. In addition, Notch1 was also expressed in distinct lymphoid and myeloid progenitors within the CD34+ population of primary CML cells. To further delineate the possible role and interactions of Notch with BCR-ABL in CD34+ primary cells from chronic-phase CML, we used P-crkl detection as a surrogate assay of BCR-ABL tyrosine kinase activity. Our data revealed that Imatinib (IM) induced BCR-ABL inhibition results in significant (p<0.05) upregulation of Notch activity, assessed by Hes1 expression. Similarly, inhibition of Notch leads to hyperactivation of BCR-ABL. This antagonistic relationship between Notch and BCR-ABL signalling was confirmed in K562 and ALL-SIL cell lines. In K562, we further validated this antagonistic relationship by inhibiting histone deacetylase (HDAC) - an effector pathway of Hes1, using valproic acid (VPA) - a HDAC inhibitor. Finally, we also confirmed the potential antagonism between Notch and BCR/ABL in In Vivo, using publically available GSE-database, by analysing gene expression profile of paired samples from chronic-phase CML patients pre- and post-Imatinib therapy. Thus, we have demonstrated an antagonistic relationship between Notch and BCR-ABL in CML. A combined inhibition of Notch and BCR-ABL may therefore provide superior clinical response over tyrosine-kinase inhibitor monotherapy by targeting both quiescent leukaemic stem cells and differentiated leukaemic cells and hence must be explored.  相似文献   

13.
14.
The lysosomal amino acid transporter SLC38A9 is referred to as transceptor, i.e. a transporter with a receptor function. The protein is responsible for coupling amino acid transport across the lysosomal membrane according to the substrate availability to mTORC1 signal transduction. This process allows cells to sense amino acid level responding to growth stimuli in physiological and pathological conditions triggering mTOR regulation. The main substrates underlying this function are glutamine and arginine. The functional and kinetic characterization of glutamine and arginine transport was performed using human SLC38A9 produced in E. coli, purified by affinity chromatography and reconstituted in liposomes. A cooperative behaviour for the wild type protein was revealed for both the substrates. A novel Na+ binding site, namely T453, was described by combined approaches of bioinformatics, site-directed mutagenesis and transport assay. Stimulation by cholesterol of glutamine and arginine transport was observed. The biological function of SLC38A9 relies on the interaction between its N-terminus and components of the mTOR complex; a deletion mutant of the N-terminus tail was produced and transport of glutamine was assayed revealing that this portion does not play any role in the intrinsic transport function of the human SLC38A9. Different features for glutamine and arginine transport were revealed: human SLC38A9 is competent for glutamine efflux, while that of arginine is negligible. In line with these results, imposed ?pH stimulated glutamine, not arginine transport. Arginine plays, on the contrary, a modulatory function and is able to stimulate glutamine efflux. Interestingly, reciprocal inhibition experiments also supported by bioinformatics, suggested that glutamine and arginine may bind to different sites in the human SLC38A9 transporter.  相似文献   

15.
BackgroundIncreased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems.MethodsThe importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry.ResultsA significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 h > 50% of excreted glutathione was derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a GLS-specific inhibitor, reduced cell proliferation and viability and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES-induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity.ConclusionsWe demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well.General significanceGlutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability.  相似文献   

16.
Breast cancer heterogeneity has made it challenging to identify mechanisms critical to the initial stages of their genesis in vivo. Here, we sought to interrogate the role of YB-1 in newly arising human breast cancers as well as in established cell lines. In a first series of experiments, we found that short-hairpin RNA-mediated knockdown of YB-1 in MDA-MB-231 cells blocked both their local tumour-forming and lung-colonising activity in immunodeficient mice. Conversely, upregulated expression of YB-1 enhanced the poor in vivo tumorigenicity of T47D cells. We then found that YB-1 knockdown also inhibits the initial generation in mice of invasive ductal carcinomas and ductal carcinomas in situ from freshly isolated human mammary cells transduced, respectively, with KRASG12D or myristoylated-AKT1. Interestingly, increased expression of HIF1α and G3BP1, two YB-1 translational targets and elements of a stress-adaptive programme, mirrored the levels of YB-1 in both transformed primary and established MDA-MB-231 breast cancer cells.Subject terms: Cancer models, Metastasis, Oncogenes  相似文献   

17.
IGF2 is an autocrine ligand for the beta cell IGF1R receptor and GLP-1 increases the activity of this autocrine loop by enhancing IGF1R expression, a mechanism that mediates the trophic effects of GLP-1 on beta cell mass and function. Here, we investigated the regulation of IGF2 biosynthesis and secretion. We showed that glutamine rapidly and strongly induced IGF2 mRNA translation using reporter constructs transduced in MIN6 cells and primary islet cells. This was followed by rapid secretion of IGF2 via the regulated pathway, as revealed by the presence of mature IGF2 in insulin granule fractions and by inhibition of secretion by nimodipine and diazoxide. When maximally stimulated by glutamine, the amount of secreted IGF2 rapidly exceeded its initial intracellular pool and tolbutamide, and high K+ increased IGF2 secretion only marginally. This indicates that the intracellular pool of IGF2 is small and that sustained secretion requires de novo synthesis. The stimulatory effect of glutamine necessitates its metabolism but not mTOR activation. Finally, exposure of insulinomas or beta cells to glutamine induced Akt phosphorylation, an effect that was dependent on IGF2 secretion, and reduced cytokine-induced apoptosis. Thus, glutamine controls the activity of the beta cell IGF2/IGF1R autocrine loop by increasing the biosynthesis and secretion of IGF2. This autocrine loop can thus integrate changes in feeding and metabolic state to adapt beta cell mass and function.  相似文献   

18.

Background

STAT3 activation is frequently detected in breast cancer and this pathway has emerged as an attractive molecular target for cancer treatment. Recent experimental evidence suggests ALDH-positive (ALDH+), or cell surface molecule CD44-positive (CD44+) but CD24-negative (CD24) breast cancer cells have cancer stem cell properties. However, the role of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24 subpopulations of breast cancer cells is unknown.

Methods and Results

We examined STAT3 activation in ALDH+ and ALDH+/CD44+/CD24 subpopulations of breast cancer cells by sorting with flow cytometer. We observed ALDH-positive (ALDH+) cells expressed higher levels of phosphorylated STAT3 compared to ALDH-negative (ALDH) cells. There was a significant correlation between the nuclear staining of phosphorylated STAT3 and the expression of ALDH1 in breast cancer tissues. These results suggest that STAT3 is activated in ALDH+ subpopulations of breast cancer cells. STAT3 inhibitors Stattic and LLL12 inhibited STAT3 phosphorylation, reduced the ALDH+ subpopulation, inhibited breast cancer stem-like cell viability, and retarded tumorisphere-forming capacity in vitro. Similar inhibition of STAT3 phosphorylation, and breast cancer stem cell viability were observed using STAT3 ShRNA. In addition, LLL12 inhibited STAT3 downstream target gene expression and induced apoptosis in ALDH+ subpopulations of breast cancer cells. Furthermore, LLL12 inhibited STAT3 phosphorylation and tumor cell proliferation, induced apoptosis, and suppressed tumor growth in xenograft and mammary fat pad mouse models from ALDH+ breast cancer cells. Similar in vitro and tumor growth in vivo results were obtained when ALDH+ cells were further selected for the stem cell markers CD44+ and CD24.

Conclusion

These studies demonstrate an important role for STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24 subpopulations of breast cancer cells which may have cancer stem cell properties and suggest that pharmacologic inhibition of STAT3 represents an effective strategy to selectively target the cancer stem cell-like subpopulation.  相似文献   

19.
20.
Cellular hypoxia response is regulated at the level of hypoxia-inducible factor (HIF) activity. A number of recently identified oxygen sensors are HIF-modifying enzymes that respond to low oxygen by altering HIF modification and thus lead to its activation. In addition to the HIF proline hydroxylases and asparagine hydroxylases, ARD1 is recently described as a HIF-1alpha acetylase that regulates its stability. We found that ARD1 is down-regulated in a number of cell lines in response to hypoxia and hypoxia mimic compounds. After surveying these lines for erythropoietin production and retroviral transfection efficiency, we chose to use HepG2 cells to study the function of ARD1. ARD1 short hairpin RNA delivered by a retroviral vector caused >80% reduction in ARD1 message. We observed decreases in erythropoietin and vascular endothelial growth factor protein production, whereas there was no change in the HIF-1alpha protein level. A gene chip analysis of HepG2 cells transduced with virus expressing ARD1 short hairpin RNA under normoxia and hypoxia conditions or with virus overexpressing recombinant ARD1 confirmed that inhibition of ARD1 does not cause activation of HIF and downstream target genes. However, this analysis revealed that ARD1 is involved in cell proliferation and in regulating a series of cellular metabolic pathways that are regulated during hypoxia response. The role of ARD1 in cell proliferation is confirmed using fluorescence labeling analysis of cell division. From these studies we conclude that ARD1 is not required to suppress HIF but is required to maintain cell proliferation in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号