首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background

CD5+ B cells are a type of regulatory immune cells, though the involvement of this B cell subset in intestinal inflammation and immune regulation is not fully understood.

Methods

We examined the distribution of CD5+ B cells in various mouse organs. Expression levels of CD11b, IgM, and toll-like receptor (TLR)-4 and -9 in B cells were evaluated. In vitro, TLR-stimulated IL-10 production by colonic lamina propria (LP) CD5+ and CD5- B cells was measured. In vivo, mice with acute or chronic dextran sulfate sodium (DSS)-induced colonic injury were examined, and the frequency of colonic LP CD5+ B cells in those was assessed by flow cytometry.

Results

The expression level of TLR9 was higher in colonic LP CD5+ B cells as compared to CD5- B cells. Colonic LP CD5+ B cells produced greater amounts of IL-10 following stimulation with TLR ligands, especially TLR9, as compared with the LP CD5- B cells. Acute intestinal inflammation transiently decreased the frequency of colonic LP CD5+ B cells, while chronic inflammation induced a persistent decrease in colonic LP CD5+ B cells and led to a CD5- B cell-dominant condition.

Conclusion

A persistent altered mucosal B cell population caused by chronic gut inflammation may be involved in the pathogenesis of inflammatory bowel diseases.  相似文献   

2.
Cigarette smoke (CS) protects against intestinal inflammation during ulcerative colitis. Immunoregulatory mechanisms sustaining this effect remain unknown. The aim of this study was to assess the effects of CS on experimental colitis and to characterize the intestinal inflammatory response at the cellular and molecular levels. Using the InExpose® System, a smoking device accurately reproducing human smoking habit, we pre-exposed C57BL/6 mice for 2 weeks to CS, and then we induced colitis by administration of dextran sodium sulfate (DSS). This system allowed us to demonstrate that CS exposure improved colonic inflammation (significant decrease in clinical score, body weight loss and weight/length colonic ratio). This improvement was associated with a significant decrease in colonic proinflammatory Th1/Th17 cytokine expression, as compared to unexposed mice (TNF (p = 0.0169), IFNγ (p<0.0001), and IL-17 (p = 0.0008)). Smoke exposure also induced an increased expression of IL-10 mRNA (p = 0.0035) and a marked recruitment of iNKT (invariant Natural Killer T; CD45+ TCRβ+ CD1d tetramer+) cells in the colon of DSS-untreated mice. Demonstration of the role of iNKT cells in CS-dependent colitis improvement was performed using two different strains of NKT cells deficient mice. Indeed, in Jα18KO and CD1dKO animals, CS exposure failed to induce significant regulation of DSS-induced colitis both at the clinical and molecular levels. Thus, our study demonstrates that iNKT cells are pivotal actors in the CS-dependent protection of the colon. These results highlight the role of intestinal iNKT lymphocytes and their responsiveness to environmental stimuli. Targeting iNKT cells would represent a new therapeutic way for inflammatory bowel diseases.  相似文献   

3.
4.
We evaluated mechanisms which mediate alterations in intracellular biochemical events in response to transient mechanical stimulation of colonic smooth muscle cells. Cultured myocytes from the circular muscle layer of the rabbit distal colon responded to brief focal mechanical deformation of the plasma membrane with a transient increase in intracellular calcium concentration ([Ca2+] i ) with peak of 422.7 ± 43.8 nm above an average resting [Ca2+] i of 104.8 ± 10.9 nm (n= 57) followed by both rapid and prolonged recovery phases. The peak [Ca2+] i increase was reduced by 50% in the absence of extracellular Ca2+, while the prolonged [Ca2+] i recovery was either abolished or reduced to ≤15% of control values. In contrast, no significant effect of gadolinium chloride (100 μm) or lanthanum chloride (25 μm) on either peak transient or prolonged [Ca2+] i recovery was observed. Pretreatment of cells with thapsigargin (1 μm) resulted in a 25% reduction of the mechanically induced peak [Ca2+] i response, while the phospholipase C inhibitor U-73122 had no effect on the [Ca2+] i transient peak. [Ca2+] i transients were abolished when cells previously treated with thapsigargin were mechanically stimulated in Ca2+-free solution, or when Ca2+ stores were depleted by thapsigargin in Ca2+-free solution. Pretreatment with the microfilament disrupting drug cytochalasin D (10 μm) or microinjection of myocytes with an intracellular saline resulted in complete inhibition of the transient. The effect of cytochalasin D was reversible and did not prevent the [Ca2+] i increases in response to thapsigargin. These results suggest a communication, which may be mediated by direct mechanical link via actin filaments, between the plasma membrane and an internal Ca2+ store. Received: 24 March 1997/Revised: 21 July 1997  相似文献   

5.
镉(cadmium,Cd)是一种生物累积性的有毒重金属元素,能够在肾组织大量蓄积并引起肾发生病变和功能损伤。前期研究证实,Cd处理能够引起猪肾PK-15细胞的活性氧(reactive oxygen species,ROS)水平升高和细胞死亡,但详细机制有待进一步研究。本研究以PK-15细胞为研究对象,通过CCK-8检测、透射电镜观察、DCFH-DA标记、JC-1染色、彗星实验和流式细胞术等研究手段,分别检测Cd处理后的细胞活性、形态变化、ROS生成、线粒体膜电位Δψm、DNA损伤及细胞凋亡情况。CCK-8实验结果显示,CdCl2处理后PK-15细胞活性下降,且呈时间和剂量依赖性;形态学观察发现,CdCl2处理引起PK-15细胞皱缩、变圆,细胞核固缩、染色质凝聚,线粒体肿胀、线粒体嵴减少或消失;荧光染色和流式细胞术检测结果显示,CdCl2处理引起PK-15细胞内ROS水平升高、线粒体膜电位Δψm下降和DNA损伤,最终导致细胞凋亡。Western印迹结果显示,CdCl2处理组中促凋亡蛋白质Bax表达量上调,抑凋亡蛋白质Bcl-2表达量下调,并且CdCl2处理组检测到了活化状态的裂解胱天蛋白酶3(cleaved caspase 3)。此外,ROS清除剂N-乙酰基-L-半胱氨酸(N-acetyl-L-cysteine,NAC)缓解了CdCl2引起的线粒体损伤、DNA损伤和细胞凋亡。综上所述,Cd通过引发氧化应激和线粒体损伤诱导PK-15细胞凋亡。  相似文献   

6.
Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.  相似文献   

7.
In the present study we sought to determine the source of heat-induced oxidative stress. We investigated the involvement of mitochondrial respiratory electron transport in post-diauxic-phase cells under conditions of lethal heat shock. Petite cells were thermosensitive, had increased nuclear mutation frequencies, and experienced elevated levels of oxidation of an intracellular probe following exposure to a temperature of 50 degrees C. Cells with a deletion in COQ7 leading to a deficiency in coenzyme Q had a much more severe thermosensitivity phenotype for these oxidative endpoints following heat stress compared to that of petite cells. In contrast, deletion of the external NADH dehydrogenases NDE1 and NDE2, which feed electrons from NADH into the electron transport chain, abrogated the levels of heat-induced intracellular fluorescence and nuclear mutation frequency. Mitochondria isolated from COQ7-deficient cells secreted more than 30 times as much H(2)O(2) at 42 as at 30 degrees C, while mitochondria isolated from cells simultaneously deficient in NDE1 and NDE2 secreted no H(2)O(2). We conclude that heat stress causes nuclear mutations via oxidative stress originating from the respiratory electron transport chains of mitochondria.  相似文献   

8.
The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2−/− mice adoptively transferred with CD4+CD45RBhigh T cells; and IL-10−/− mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11bCD11clowPDCA-1+ plasmacytoid dendritic cells (DCs) abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4+CD45RBhigh T cell-transferred RAG-2−/− mice and IL-10−/− mice in parallel with the emergence of macrophages (Mφs) and conventional DCs (cDCs). Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS)-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.  相似文献   

9.
Increasing evidence suggests that Alzheimer’s disease is associated with mitochondrial dysfunction and oxidative damage. To develop a cellular model of Alzheimer’s disease, we investigated the effects of thioredoxin (Trx) expression in the response to mitochondrial dysfunction-enhanced oxidative stress in the SH-SY5Y human neuroblastoma cells. Treatment of SH-SY5Y cells with 15 mM of NaN3, an inhibitor of cytochrome c oxidase (complex IV), led to alteration of mitochondrial membrane potential but no significant changes in cell viability. Therefore, cells were first treated with 15 mM NaN3 to induce mitochondrial dysfunction, then, exposed to different concentrations of H2O2. Cell susceptibility was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and morphological observation. Expressions of Trx mRNA and protein were determined by RT-PCR; and Western-blot analysis, respectively. It was found that the SH-SY5Y cells with mitochondrial impairment had lower levels of Trx mRNA and protein, and were significantly more vulnerable than the normal cells after exposure to H2O2 while no significant changes of Trx mRNA and protein in SH-SY5Y cells exposed to H2O2 but without mitochondrial complex IV inhibition. These results, together with our previous study in primary cultured neurons, demonstrated that the increased susceptibility to oxidative stress is induced at least in part by the down-regulation of Trx in SH-SY5Y human neuroblastoma cells with mitochondrial impairment and also suggest the mitochondrial dysfunction-enhanced oxidative stress could be used as a cellular model to study the mechanisms of Alzheimer’s disease and agents for prevention and treatment.  相似文献   

10.
Mitochondrial Ribosomes in HeLa Cells   总被引:5,自引:0,他引:5  
HeLa cell mitochondria contain 60S ribosomes which seem to consist of subunits of 45S and 35S particles. The 16S and 12S RNA components are coded by mitochondrial DNA.  相似文献   

11.
Translocator protein (TSPO) is an 18-kDa cholesterol- and drug-binding protein conserved from bacteria to humans. While surveying for Tspo-like genes, we identified its paralogous gene, Tspo2, encoding an evolutionarily conserved family of proteins that arose by gene duplications before the divergence of avians and mammals. Comparative analysis of Tspo1 and Tspo2 functions suggested that Tspo2 has become subfunctionalized, typical of duplicated genes, characterized by the loss of diagnostic drug ligand-binding but retention of cholesterol-binding properties, hematopoietic tissue- and erythroid cell-specific distribution, and subcellular endoplasmic reticulum and nuclear membrane localization. Expression of Tspo2 in erythroblasts is strongly correlated with the down-regulation of the enzymes involved in cholesterol biosynthesis. Overexpression of TSPO2 in erythroid cells resulted in the redistribution of intracellular free cholesterol, an essential step in nucleus expulsion during erythrocyte maturation. Taken together, these data identify the TSPO2 family of proteins as mediators of cholesterol redistribution-dependent erythroblast maturation during mammalian erythropoiesis.Translocator protein (TSPO)2 is an 18-kDa protein that was previously known as PBR (peripheral type benzodiazepine receptor) and represents a gene family evolutionarily conserved from bacteria to humans (1). In bacteria, TSPO is the tryptophan-rich sensory protein, an integral membrane protein that acts as a negative regulator of the expression of specific photosynthesis genes in response to oxygen and light (2). It is involved in the efflux of porphyrin intermediates from the cell, and several conserved aromatic residues within TSPO are thought to be involved in binding porphyrin intermediates (2). TSPO of bacterial origin has been shown to have the same ligand binding properties as mammalian TSPO proteins (3). In addition to the binding of porphyrin and heme, mammalian TSPO can replace the activity of its bacterial homologs (2, 4, 5). Rat TSPO was shown to retain its structure within the bacterial outer membrane, to functionally substitute for the bacterial homolog, and to act in a manner similar to TSPO in the outer mitochondrial membrane (6). Therefore, it is conceivable that some conserved functions of the Tspo genes within a cell are maintained from bacteria to plants and to mammals.In mammals, the biological significance of TSPO has been studied for decades, and TSPO has been shown to be involved in a variety of cellular functions, including cholesterol transport and steroid hormone synthesis, mitochondrial respiration, permeability transition pore opening, apoptosis, and proliferation (710). Moreover, its expression correlates with certain pathological conditions such as cancer and endocrine and neurological diseases (8). Although some conserved cellular functions of Tspo are shared from bacteria to mammals, such as cholesterol-binding and transport, their biological significance seems to have adapted to serve specific functions critical for each organism. For instance, cholesterol transport into mitochondria is the rate-determining step in steroidogenesis (8, 11). TSPO serves the similar function in plants (12), insects (13), and mammals (14). However, the appearance of the drug, such as the benzodiazepine diazepam, binding sites on TSPO evolved later than the brain-specific γ-aminobutyric acid A receptor benzodiazepine binding sites (15), although drug binding was observed in both the plant and insect TSPOs (12, 13). Thus, throughout evolution, mammalian Tspo genes have exhibited extraordinary plasticity, a valuable trait to be further exploited.We sought to reveal the mechanisms controlling the molecular evolution of Tspo and Tspo-like genes and the ligand binding sites in recently sequenced mammalian and other eukaryotic genomes and characterize the relationships and potential functional similarities in cholesterol synthesis, trafficking, and cholesterol-supported steroidogenesis between different Tspo genes. During these studies, we identified a new family of Tspo-like genes involved in cholesterol trafficking and redistribution, which is linked to erythropoiesis and probably to a new mechanism of erythroblast maturation.  相似文献   

12.
13.
Mitochondria are considered major generators of cellular reactive oxygen species (ROS) which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease (PD). We have recently shown that isolated mitochondria consume hydrogen peroxide (H2O2) in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx) system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H2O2 levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR) inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells) resulted in a synergistic increase in H2O2 levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2) in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H2O2, and cell death. Therefore, in addition to their role in the production of cellular H2O2 the mitochondrial Trx/Prx system serve as a major sink for cellular H2O2 and its disruption may contribute to dopaminergic pathology associated with PD.  相似文献   

14.
Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF) or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A) is a mitochondrial protein regulated by Hypoxia-inducible Factor-1α (HIF1α). Here we show that while HIGD1A resides in mitochondria during physiological hypoxia, severe metabolic stress, such as glucose starvation coupled with hypoxia, in addition to DNA damage induced by etoposide, triggers its nuclear accumulation. We show that nuclear localization of HIGD1A overlaps with that of AIF, and is dependent on the presence of BAX and BAK. Furthermore, we show that AIF and HIGD1A physically interact. Additionally, we demonstrate that nuclear HIGD1A is a potential marker of metabolic stress in vivo, frequently observed in diverse pathological states such as myocardial infarction, hypoxic-ischemic encephalopathy (HIE), and different types of cancer. In summary, we demonstrate a novel nuclear localization of HIGD1A that is commonly observed in human disease processes in vivo.  相似文献   

15.
Cholestatic liver fibrosis was achieved by bile duct ligation (BDL) in mice. Liver injury associated with BDL for 15 days included significant reactive oxygen/nitrogen species generation, liver inflammation, cell death and fibrosis. Administration of Epigallocatechin 3-Gallate (EGCG) in animals reduced liver fibrosis involving parenchymal cells in BDL model. EGCG attenuated BDL-induced gene expression of pro-fibrotic markers (Collagen, Fibronectin, alpha 2 smooth muscle actin or SMA and connective tissue growth factor or CTGF), mitochondrial oxidative stress, cell death marker (DNA fragmentation and PARP activity), NFκB activity and pro-inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2). EGCG also improved BDL induced damages of mitochondrial electron transport chain complexes and antioxidant defense enzymes such as glutathione peroxidase and manganese superoxide dismutase. EGCG also attenuated hydrogen peroxide induced cell death in hepatocytes in vitro and alleviate stellate cells mediated fibrosis through TIMP1, SMA, Collagen 1 and Fibronectin in vitro. In conclusion, the reactive oxygen/nitrogen species generated from mitochondria plays critical pathogenetic role in the progression of liver inflammation and fibrosis and this study indicate that EGCG might be beneficial for reducing liver inflammation and fibrosis.  相似文献   

16.
17.
18.
The effects of CGP 48664 and DFMO, selective inhibitors of the key enzymes of polyamine biosynthesis, namely, ofS-adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC), were investigated on growth, polyamine metabolism, and DNA methylation in the Caco-2 cell line. Both inhibitors caused growth inhibition and affected similarly the initial expression of the differentiation marker sucrase. In the presence of the AdoMetDC inhibitor, ODC activity and the intracellular pool of putrescine were enhanced, whereas the spermidine and spermine pools were decreased. In the presence of the ODC inhibitor, the AdoMetDC activity was enhanced and the intracellular pools of putrescine and spermidine were decreased. With both compounds, the degree of global DNA methylation was increased. Spermine and spermidine (but not putrescine) selectively inhibited cytosine–DNA methyltransferase activity. Our observations suggest that spermidine (and to a lesser extent spermine) controls DNA methylation and may represent a crucial step in the regulation of Caco-2 cell growth and differentiation.  相似文献   

19.
Permeant cationic fluorescent probes are widely employed to monitor mitochondrial transmembrane potential and its changes. The application of such potential-dependent probes in conjunction with both fluorescence microscopy and fluorescence spectroscopy allows the monitoring of mitochondrial membrane potential in individual living cells as well as in large population of cells. These approaches to the analysis of membrane potential is of extremely high value to obtain insights into both the basic energy metabolism and its dysfunction in pathologic cells. However, the use of fluorescent molecules to probe biological phenomena must follow the awareness of some principles of fluorescence emission, quenching, and quantum yield since it is a very sensitive tool, but because of this extremely high sensitivity it is also strongly affected by the environment. In addition, the instruments used to monitor fluorescence and its changes in biological systems have also to be employed with cautions due to technical limits that may affect the signals. We have therefore undertaken to review the most currently used analytical methods, providing a summary of practical tips that should precede data acquisition and subsequent analysis. Furthermore, we discuss the application and feasibility of various techniques and discuss their respective strength and weakness.  相似文献   

20.
Xiang  Biao  Li  Daowen  Chen  Yiqiang  Li  Meng  Zhang  Yuan  Sun  Tun  Tang  Shusheng 《Neurochemical research》2021,46(2):367-378
Neurochemical Research - Impaired homeostasis of copper has been linked to different pathophysiological mechanisms in neurodegenerative diseases and oxidative injury has been proposed as the main...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号