首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Seo PJ  Park MJ  Lim MH  Kim SG  Lee M  Baldwin IT  Park CM 《The Plant cell》2012,24(6):2427-2442
The circadian clock synchronizes biological processes to daily cycles of light and temperature. Clock components, including CIRCADIAN CLOCK-ASSOCIATED1 (CCA1), are also associated with cold acclimation. However, it is unknown how CCA1 activity is modulated in coordinating circadian rhythms and cold acclimation. Here, we report that self-regulation of Arabidopsis thaliana CCA1 activity by a splice variant, CCA1β, links the clock to cold acclimation. CCA1β interferes with the formation of CCA1α-CCA1α and LATE ELONGATED HYPOCOTYL (LHY)-LHY homodimers, as well as CCA1α-LHY heterodimers, by forming nonfunctional heterodimers with reduced DNA binding affinity. Accordingly, the periods of circadian rhythms were shortened in CCA1β-overexpressing transgenic plants (35S:CCA1β), as observed in the cca1 lhy double mutant. In addition, the elongated hypocotyl and leaf petiole phenotypes of CCA1α-overexpressing transgenic plants (35S:CCA1α) were repressed by CCA1β coexpression. Notably, low temperatures suppressed CCA1 alternative splicing and thus reduced CCA1β production. Consequently, whereas the 35S:CCA1α transgenic plants exhibited enhanced freezing tolerance, the 35S:CCA1β transgenic plants were sensitive to freezing, indicating that cold regulation of CCA1 alternative splicing contributes to freezing tolerance. On the basis of these findings, we propose that dynamic self-regulation of CCA1 underlies the clock regulation of temperature responses in Arabidopsis.  相似文献   

4.
5.
6.
7.
8.
9.
Circadian clocks, especially peripheral clocks, can be strongly entrained by daily feedings, but few papers have reported the effects of food components on circadian rhythm. The effects of resveratrol, a natural polyphenol, on circadian clocks of Rat-1 cells were analyzed. A dose of 100 μM resveratrol, which did not show cytotoxicity, regulated the expression of clock genes Per1, Per2, and Bmal1.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
Biological clock components have been detected in many epithelial tissues of the digestive tract of mammals (oral mucosa, pancreas, and liver), suggesting the existence of peripheral circadian clocks that may be entrainable by food. Our aim was to investigate the expression of main peripheral clock genes in colonocytes of healthy humans and in human colon carcinoma cell lines. The presence of clock components was investigated in single intact colonic crypts isolated by chelation from the biopsies of 25 patients (free of any sign of colonic lesions) undergoing routine colonoscopy and in cell lines of human colon carcinoma (Caco2 and HT29 clone 19A). Per‐1, per‐2, and clock mRNA were detected by real‐time RT‐PCR. The three‐dimensional distributions of PER‐1, PER‐2, CLOCK, and BMAL1 proteins were recorded along colonic crypts by immunofluorescent confocal imaging. We demonstrate the presence of per‐1, per‐2, and clock mRNA in samples prepared from colonic crypts of 5 patients and in all cell lines. We also demonstrate the presence of two circadian clock proteins, PER‐1 and CLOCK, in human colonocytes on crypts isolated from 20 patients (15 patients for PER‐1 and 6 for CLOCK) and in colon carcinoma cells. Establishing the presence of clock proteins in human colonic crypts is the first step toward the study of the regulation of the intestinal circadian clock by nutrients and feeding rhythms.  相似文献   

19.
20.
The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号