首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of hyperphosphorylated tau in the entorhinal cortex (EC) is one of the earliest pathological hallmarks in patients with Alzheimer’s disease (AD). It can occur before significant Aβ deposition and appears to “spread” into anatomically connected brain regions. To determine whether this early-stage pathology is sufficient to cause disease progression and cognitive decline in experimental models, we overexpressed mutant human tau (hTauP301L) predominantly in layer II/III neurons of the mouse EC. Cognitive functions remained normal in mice at 4, 8, 12 and 16 months of age, despite early and extensive tau accumulation in the EC. Perforant path (PP) axon terminals within the dentate gyrus (DG) contained abnormal conformations of tau even in young EC-hTau mice, and phosphorylated tau increased with age in both the EC and PP. In old mice, ultrastructural alterations in presynaptic terminals were observed at PP-to-granule cell synapses. Phosphorylated tau was more abundant in presynaptic than postsynaptic elements. Human and pathological tau was also detected within hippocampal neurons of this mouse model. Thus, hTauP301L accumulation predominantly in the EC and related presynaptic pathology in hippocampal circuits was not sufficient to cause robust cognitive deficits within the age range analyzed here.  相似文献   

2.
Abstract: The mouse mutant coloboma ( Cm /+), which exhibits profound spontaneous hyperactivity and bears a deletion mutation on chromosome 2, including the gene encoding synaptosomal protein SNAP-25, has been proposed to model aspects of attention-deficit hyperactivity disorder. Increasing evidence suggests a crucial role for SNAP-25 in the release of both classical neurotransmitters and neuropeptides. In the present study, we compared the release of specific neurotransmitters in vitro from synaptosomes and slices of selected brain regions from Cm /+ mice with that of +/+ mice. The release of dopamine (DA) and serotonin (5-HT) from striatum, and of arginine vasopressin and corticotropin-releasing factor from hypothalamus and amygdala is calcium-dependent. Glutamate release from and content in cortical synaptosomes of Cm /+ mice are greatly reduced, which might contribute to the learning deficits in these mutants. In dorsal striatum of Cm /+ mutants, but not ventral striatum, KCI-induced release of DA is completely blocked and that of 5-HT is significantly attenuated, suggesting that striatal DA and 5-HT deficiencies may be involved in hyperactivity. Further, although acetylcholine failed to induce hypothalamic corticotropin-releasing factor release from Cm /+ slices, restraint stress increased plasma corticosterone levels in Cm /+ mice to a significantly higher level than in +/+ mice, suggesting an important role for arginine vasopressin in hypothalamic-pituitary-adrenal axis activation. These results suggest that reduced SNAP-25 expression may contribute to a region-specific and neurotransmitter-specific deficiency in neurotransmitter release.  相似文献   

3.
Neurochemical Research - Taurine, an essential neutraceutical, has been reported to exhibit antioxidant and anti-inflammatory properties. Substantial evidence indicates that prolonged stress is one...  相似文献   

4.

Objective

Because reduction of the microtubule-associated protein Tau has beneficial effects in mouse models of Alzheimer''s disease and epilepsy, we wanted to determine whether this strategy can also improve the outcome of mild traumatic brain injury (TBI).

Methods

We adapted a mild frontal impact model of TBI for wildtype C57Bl/6J mice and characterized the behavioral deficits it causes in these animals. The Barnes maze, Y maze, contextual and cued fear conditioning, elevated plus maze, open field, balance beam, and forced swim test were used to assess different behavioral functions. Magnetic resonance imaging (MRI, 7 Tesla) and histological analysis of brain sections were used to look for neuropathological alterations. We also compared the functional effects of this TBI model and of controlled cortical impact in mice with two, one or no Tau alleles.

Results

Repeated (2-hit), but not single (1-hit), mild frontal impact impaired spatial learning and memory in wildtype mice as determined by testing of mice in the Barnes maze one month after the injury. Locomotor activity, anxiety, depression and fear related behaviors did not differ between injured and sham-injured mice. MRI imaging did not reveal focal injury or mass lesions shortly after the injury. Complete ablation or partial reduction of tau prevented deficits in spatial learning and memory after repeated mild frontal impact. Complete tau ablation also showed a trend towards protection after a single controlled cortical impact. Complete or partial reduction of tau also reduced the level of axonopathy in the corpus callosum after repeated mild frontal impact.

Interpretation

Tau promotes or enables the development of learning and memory deficits and of axonopathy after mild TBI, and tau reduction counteracts these adverse effects.  相似文献   

5.
The development of social behavior is strongly influenced by the serotonin system. Serotonin 2c receptor (5-HT2cR) is particularly interesting in this context considering that pharmacological modulation of 5-HT2cR activity alters social interaction in adult rodents. However, the role of 5-HT2cR in the development of social behavior is unexplored. Here we address this using Htr2c knockout mice, which lack 5-HT2cR. We found that these animals exhibit social behavior deficits as adults but not as juveniles. Moreover, we found that the age of onset of these deficits displays similar timing as the onset of susceptibility to spontaneous death and audiogenic-seizures, consistent with the hypothesis that imbalanced excitation and inhibition (E/I) may contribute to social behavioral deficits. Given that autism spectrum disorder (ASD) features social behavioral deficits and is often co-morbid with epilepsy, and given that 5-HT2cR physically interacts with Pten, we tested whether a second site mutation in the ASD risk gene Pten can modify these phenotypes. The age of spontaneous death is accelerated in mice double mutant for Pten and Htr2c relative to single mutants. We hypothesized that pharmacological antagonism of 5-HT2cR activity in adult animals, which does not cause seizures, might modify social behavioral deficits in Pten haploinsufficient mice. SB 242084, a 5-HT2cR selective antagonist, can reverse the social behavior deficits observed in Pten haploinsufficient mice. Together, these results elucidate a role of 5-HT2cR in the modulation of social behavior and seizure susceptibility in the context of normal development and Pten haploinsufficiency.  相似文献   

6.
Melanin-concentrating hormone (MCH) is a cyclic heptadecapeptide that concentrates melanin granules in the melanophores and lightens the body color of a fish. To investigate the utility of MCH as a reporter gene, a transgenic medaka strain overexpressing the MCH gene was established and its phenotypic features were examined. The salmon MCH gene driven by cytomegalovirus promoter was injected into 100 fertilized eggs of the HNI-1 medaka strain, which exhibits black body color. One F0 female transmitted the transgene and a lightened body color phenotype to the F1 generation. A homozygous transgenic strain was established by crossing F2 fish homozygous for the transgene. Expression of the transgene was detected in several organs by Northern blotting. The melanin granules of transgenics were highly shrunk. Bioassay using scales confirmed the secretion of MCH into blood, and the MCH concentration was estimated between 0.5 and 5 μM. Development, growth, feeding behavior, and reproduction of transgenics did not differ significantly among transgenic and nontransgenic siblings. The result whereby enhanced MCH expression induced a change in body color, but no remarkable abnormality, suggests the usefulness of MCH as a novel reporter gene with unique features. Received January 30, 2001; accepted May 1, 2001  相似文献   

7.
摘要 目的:探究β淀粉样蛋白(Aβ)和tau蛋白磷酸化程度与颞叶癫痫患者认知缺陷相关性。方法:2019年至2020年于我院接受治疗的70例颞叶癫痫患者作为本研究的实验组,同时纳入同期健康体检者70例作为本研究的对照组。对比两组一般临床指标、外周血清中β淀粉样蛋白和tau蛋白磷酸化程度;评估两组的智力、记忆力和认知功能障碍;通过Person法分析β淀粉样蛋白和tau蛋白磷酸化程度与颞叶癫痫患者认知缺陷相关性。结果:(1)比较显示实验组的Aβ1-28蛋白、Aβ1-40蛋白、tau蛋白和p-tau蛋白均高于对照组,但Aβ1-42蛋白低于对照组(P<0.05);(2)实验组语言智商(VIQ)、操作智商(PIQ)以及总智商(FIQ)评分均低于对照组(P<0.05);(3)实验组评估低于对照组(P<0.05);(4)实验组的MoCA评分显著低于对照组(P<0.05);(5)Aβ1-28蛋白、Aβ1-40蛋白、Tau蛋白和p-tau蛋白与颞叶癫痫患者认知缺陷存在正相关关系;Aβ1-42蛋白与颞叶癫痫患者认知缺陷则存在负相关关系(P<0.05)。结论:颞叶癫痫患者认知缺陷与tau蛋白磷酸化程度、Aβ1-28蛋白、Aβ1-42蛋白和Aβ1-40蛋白水平具有相关性,可作为认知缺陷的判断指标,为体检或临床发现颞叶癫痫患者是否存在认知功能缺陷提供依据。  相似文献   

8.
Abstract : Presynaptic D2 dopamine (DA) autoreceptors, which are well known to modulate DA release, have recently been shown to regulate DA transporter (DAT) activity. To examine the effects of D2 DA receptor deficiency on DA release and DAT activity in dorsal striatum, we used mice genetically engineered to have two (D2+/+), one (D2+/-), or no (D2-/-) functional copies of the gene coding for the D2 DA receptor. In vivo microdialysis studies demonstrated that basal and K+-evoked extracellular DA concentrations were similar in all three genotypes. However, using in vivo electrochemistry, the D2-/- mice were found to have decreased DAT function, i.e., clearance of locally applied DA was decreased by 50% relative to that in D2+/+ mice. In D2+/+ mice, but not D2-/- mice, local application of the D2-like receptor antagonist raclopride increased DA signal amplitude, indicating decreased DA clearance. Binding assays with the cocaine analogue [3H]WIN 35,428 showed no genotypic differences in either density or affinity of DAT binding sites in striatum or substantia nigra, indicating that the differences seen in DAT activity were not a result of decreased DAT expression. These results further strengthen the idea that the D2 DA receptor subtype modulates activity of the striatal DAT.  相似文献   

9.
Nucleation activity of actin polymerization of actinogelin, a calcium-sensitive F-actin cross-linking protein from rat liver, was measured by a fluorescence enhancement method using pyrenyl-actin and by high shear viscometry. No stimulation of nucleation by the addition of actinogelin was observed under several ionic conditions using the fluorescent method. Similar results were also obtained by viscometry. Therefore, it can be concluded that actinogelin has no nucleation activity for actin polymerization. By electron microscopy, it was found that actinogelin molecule has a dumbbell shape, binds to side of F-actin through its end(s), and cross-links actin filaments by binding with its two ends. It was also found that meshwork formation occurred in low Ca2+ conditions from F-actin and actinogelin. Under non-gelling high Ca2+ conditions, binding of actinogelin along the side of F-actin with its one end was still detected in accordance with the binding assay using ultracentrifugation and protein determination. Under low Ca2+ conditions, the critical gelling concentration of actinogelin measured by low shear viscometry at 20 degrees C was 6 micrograms/ml for 250 micrograms/ml of actin. Comparing this value with those of the other actin cross-linking proteins, it was found that actinogelin was one of proteins with the highest gelation activity. On the other hand, gelation activity of actinogelin in high Ca2+ conditions was one order of magnitude lower; more than 50 micrograms/ml of the protein was required for gelation. At 37 degrees C, gelation activity of actinogelin at low Ca2+ concentration was decreased to about a quarter of that at 20 degrees C, but this was still higher than that of gizzard alpha-actinin at 20 degrees C. Thus, role of actinogelin as an efficient and Ca2+-regulated cross-linker of microfilaments was substantiated.  相似文献   

10.
Amyloid-β and tau protein are the two most prominent factors in the pathology of Alzheimer disease. Recent studies indicate that phosphorylated tau might affect synaptic function. We now show that endogenous tau is found at postsynaptic sites where it interacts with the PSD95-NMDA receptor complex. NMDA receptor activation leads to a selective phosphorylation of specific sites in tau, regulating the interaction of tau with Fyn and the PSD95-NMDA receptor complex. Based on our results, we propose that the physiologically occurring phosphorylation of tau could serve as a regulatory mechanism to prevent NMDA receptor overexcitation.  相似文献   

11.
12.
Neurons express two families of transporter-like proteins − Synaptic Vesicle protein 2 (SV2A, B, and C) and SV2-related proteins (SVOP and SVOPL). Both families share structural similarity with the Major Facilitator (MF) family of transporters. SV2 is present in all neurons and endocrine cells, consistent with it playing a key role in regulated exocytosis. Like SV2, SVOP is expressed in all brain regions, with highest levels in cerebellum, hindbrain and pineal gland. Furthermore, SVOP is expressed earlier in development than SV2 and is one of the neuronal proteins whose expression declines most during aging. Although SV2 is essential for survival, it is not required for development. Because significant levels of neurotransmission remain in the absence of SV2 it has been proposed that SVOP performs a function similar to that of SV2 that mitigates the phenotype of SV2 knockout mice. To test this, we generated SVOP knockout mice and SVOP/SV2A/SV2B triple knockout mice. Mice lacking SVOP are viable, fertile and phenotypically normal. Measures of neurotransmission and behaviors dependent on the cerebellum and pineal gland revealed no measurable phenotype. SVOP/SV2A/SV2B triple knockout mice did not display a phenotype more severe than mice harboring the SV2A/SV2B gene deletions. These findings support the interpretation that SVOP performs a unique, though subtle, function that is not necessary for survival under normal conditions.  相似文献   

13.
This study confirmed the ameliorating effect of immature persimmon (Diospyros kaki) ethanolic extract (IPEE) on neuronal cytotoxicity in amyloid beta (Aβ)1–42-induced ICR mice. The administration of IPEE ameliorated the cognitive dysfunction in Aβ1–42-induced mice by improving the spatial working memory, the short-term and long-term memory functions. IPEE protected the cerebral cholinergic system, such as the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity, and antioxidant system, such as the superoxide dismutase (SOD), reduced glutathione (GSH) and malondialdehyde (MDA) contents. In addition, mitochondrial dysfunction against Aβ1–42-induced toxicity was reduced by regulating the reactive oxygen species (ROS), mitochondrial membrane potential and ATP contents. In addition, IPEE regulated the expression levels of tau signaling, such as TNF-α, p-JNK, p-Akt, p-GSK3β, p-tau, p-NF-κB, BAX and caspase 3. Finally, gallic acid, ellagic acid and quercetin 3-O-(6″-acetyl-glucoside) were identified as the physiological compounds of IPEE using ultra-performance liquid chromatography ion mobility separation quadrupole time-of-flight/tandem mass spectrometry (UPLC IMS Q-TOF/MS2).  相似文献   

14.
Treating rats with kainic acid induces status epilepticus (SE) and leads to the development of behavioral deficits and spontaneous recurrent seizures later in life. However, in a subset of rats, kainic acid treatment does not induce overt behaviorally obvious acute SE. The goal of this study was to compare the neuroanatomical and behavioral changes induced by kainate in rats that developed convulsive SE to those who did not. Adult male Wistar rats were treated with kainic acid and tested behaviorally 5 months later. Rats that had experienced convulsive SE showed impaired performance on the spatial water maze and passive avoidance tasks, and on the context and tone retention tests following fear conditioning. In addition, they exhibited less anxiety-like behaviors than controls on the open-field and elevated plus-maze tests. Histologically, convulsive SE was associated with marked neuron loss in the hippocampal CA3 and CA1 fields, and in the dentate hilus. Rats that had not experienced convulsive SE after kainate treatment showed less severe, but significant impairments on the spatial water maze and passive avoidance tasks. These rats had fewer neurons than control rats in the dentate hilus, but not in the hippocampal CA3 and CA1 fields. Correlational analyses revealed significant relationships between spatial memory indices of rats and neuronal numbers in the dentate hilus and CA3 pyramidal field. These results show that a part of the animals that do not display intense behavioral seizures (convulsive SE) immediately after an epileptogenic treatment, later in life, they may still have noticeable structural and functional changes in the brain.  相似文献   

15.
Nicotine, the main component of tobacco smoke, exerts influence on mood, and contributes to physical and psychological dependence. Taking into account frequent concomitance of nicotine abuse and stress, we aimed to research behavioral and biochemical effects associated with nicotine administration in combination with chronic unpredictable mild stress (CUMS). Mice were submitted to the procedure of CUMS for 4 weeks, 2 h per day. Our results revealed that CUMS-exposed animals exhibited behavioral alteration like anxiety disorders in the elevated plus maze (EPM) test, the disturbances in memory in the passive avoidance (PA) test and depressive effects in the forced swim test (FST). Moreover, nicotine (0.05–0.5 mg/kg), after an acute or subchronic administration decreased stress-induced depression- and anxiety-like effect as well as memory deficit. Administration of metyrapone (50 mg/kg), a glucocorticosteroid antagonist, alleviated the depressive effect induced by the CUMS. The biochemical experiments showed decreased values of the total antioxidant status (TAS), activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) with simultaneously increased in malondialdehyde (MDA) concentration in mice submitted to the CUMS. The same effects were observed after an acute and subchronic nicotine administration within all examined brain structures (i.e., hippocampus, cortex, and cerebellum) and in the whole brain in non-stressed and stressed mice confirming pro-oxidative effect of nicotine. Our study contributes to the understanding of behavioral and biochemical mechanisms involved in stress-induced disorders such as depression, anxiety and memory disturbances as well as dual nicotine-stress interactions on the basis of the development of nicotine dependence.  相似文献   

16.
Homozygous glucagon-GFP knock-in mice (Gcggfp/gfp) lack proglucagon derived-peptides including glucagon and GLP-1, and are normoglycemic. We have previously shown that Gcggfp/gfp show improved glucose tolerance with enhanced insulin secretion. Here, we studied glucose and energy metabolism in Gcggfp/gfp mice fed a high-fat diet (HFD). Male Gcggfp/gfp and Gcggfp/+ mice were fed either a normal chow diet (NCD) or an HFD for 15–20 weeks. Regardless of the genotype, mice on an HFD showed glucose intolerance, and Gcggfp/gfp mice on HFD exhibited impaired insulin secretion whereas Gcggfp/+ mice on HFD exhibited increased insulin secretion. A compensatory increase in β-cell mass was observed in Gcggfp/+mice on HFD, but not in Gcggfp/gfp mice on the same diet. Weight gain was significantly lower in Gcggfp/gfp mice than in Gcggfp/+mice. Oxygen consumption was enhanced in Gcggfp/gfp mice compared to Gcggfp/+ mice on an HFD. HFD feeding significantly increased uncoupling protein 1 mRNA expression in brown adipose and inguinal white adipose tissues of Gcggfp/gfp mice, but not of Gcggfp/+mice. Treatment with the glucagon-like peptide-1 receptor agonist liraglutide (200 mg/kg) improved glucose tolerance in Gcggfp/gfp mice and insulin content in Gcggfp/gfp and Gcggfp/+ mice was similar after liraglutide treatment. Our findings demonstrate that Gcggfp/gfp mice develop diabetes upon HFD-feeding in the absence of proglucagon-derived peptides, although they are resistant to diet-induced obesity.  相似文献   

17.
We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression—not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for producing chimeric mice for use in future long-term studies, including hepatitis virus infection analysis or drug toxicity studies.  相似文献   

18.
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.  相似文献   

19.
Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer''s disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17–42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.  相似文献   

20.
Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号