首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students'' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.  相似文献   

3.
One of the most critical functions of the various Proteomics organizations is the training of young scientists and the dissemination of information to the general scientific community. The education committees of the Human Proteome Organisation (HUPO) and the European Proteomics Association (EuPA) together with the other local proteomics associations are therefore launching a joint Tutorial Program to meet these needs. The level is aimed at Masters/PhD level students with good basic training in biology, biochemistry, mathematics and statistics. The Tutorials will consist of a review/teaching article with an accompanying talk slide presentation for classroom teaching. The Tutorial Program will cover core techniques and basics as an introduction to scientists new to the field. The entire series of articles and slides will be made freely available for teaching use at the Journals and Organizations homepages.  相似文献   

4.
BackgroundAlthough a substantial number of studies focus on the teaching and application of medical statistics in China, few studies comprehensively evaluate the recognition of and demand for medical statistics. In addition, the results of these various studies differ and are insufficiently comprehensive and systematic.ObjectivesThis investigation aimed to evaluate the general cognition of and demand for medical statistics by undergraduates, graduates, and medical staff in China.MethodsWe performed a comprehensive database search related to the cognition of and demand for medical statistics from January 2007 to July 2014 and conducted a meta-analysis of non-controlled studies with sub-group analysis for undergraduates, graduates, and medical staff.ResultsThere are substantial differences with respect to the cognition of theory in medical statistics among undergraduates (73.5%), graduates (60.7%), and medical staff (39.6%). The demand for theory in medical statistics is high among graduates (94.6%), undergraduates (86.1%), and medical staff (88.3%). Regarding specific statistical methods, the cognition of basic statistical methods is higher than of advanced statistical methods. The demand for certain advanced statistical methods, including (but not limited to) multiple analysis of variance (ANOVA), multiple linear regression, and logistic regression, is higher than that for basic statistical methods. The use rates of the Statistical Package for the Social Sciences (SPSS) software and statistical analysis software (SAS) are only 55% and 15%, respectively.ConclusionThe overall statistical competence of undergraduates, graduates, and medical staff is insufficient, and their ability to practically apply their statistical knowledge is limited, which constitutes an unsatisfactory state of affairs for medical statistics education. Because the demand for skills in this area is increasing, the need to reform medical statistics education in China has become urgent.  相似文献   

5.
Tropical biologists study the richest and most endangered biodiversity in the planet, and in these times of climate change and mega-extinctions, the need for efficient, good quality research is more pressing than in the past. However, the statistical component in research published by tropical authors sometimes suffers from poor quality in data collection; mediocre or bad experimental design and a rigid and outdated view of data analysis. To suggest improvements in their statistical education, we listed all the statistical tests and other quantitative analyses used in two leading tropical journals, the Revista de Biología Tropical and Biotropica, during a year. The 12 most frequent tests in the articles were: Analysis of Variance (ANOVA), Chi-Square Test, Student's T Test, Linear Regression, Pearson's Correlation Coefficient, Mann-Whitney U Test, Kruskal-Wallis Test, Shannon's Diversity Index, Tukey's Test, Cluster Analysis, Spearman's Rank Correlation Test and Principal Component Analysis. We conclude that statistical education for tropical biologists must abandon the old syllabus based on the mathematical side of statistics and concentrate on the correct selection of these and other procedures and tests, on their biological interpretation and on the use of reliable and friendly freeware. We think that their time will be better spent understanding and protecting tropical ecosystems than trying to learn the mathematical foundations of statistics: in most cases, a well designed one-semester course should be enough for their basic requirements.  相似文献   

6.
Sauermann H  Roach M 《PloS one》2012,7(5):e36307
Even though academic research is often viewed as the preferred career path for PhD trained scientists, most U.S. graduates enter careers in industry, government, or "alternative careers." There has been a growing concern that these career patterns reflect fundamental imbalances between the supply of scientists seeking academic positions and the availability of such positions. However, while government statistics provide insights into realized career transitions, there is little systematic data on scientists' career preferences and thus on the degree to which there is a mismatch between observed career paths and scientists' preferences. Moreover, we lack systematic evidence whether career preferences adjust over the course of the PhD training and to what extent advisors exacerbate imbalances by encouraging their students to pursue academic positions. Based on a national survey of PhD students at tier-one U.S. institutions, we provide insights into the career preferences of junior scientists across the life sciences, physics, and chemistry. We also show that the attractiveness of academic careers decreases significantly over the course of the PhD program, despite the fact that advisors strongly encourage academic careers over non-academic careers. Our data provide an empirical basis for common concerns regarding labor market imbalances. Our results also suggest the need for mechanisms that provide PhD applicants with information that allows them to carefully weigh the costs and benefits of pursuing a PhD, as well as for mechanisms that complement the job market advice advisors give to their current students.  相似文献   

7.
Li  Yingzhen  Liu  Xiaofei  Zeng  Huiyun  Zhang  Jingwen  Zhang  Liyun 《Biological invasions》2021,23(6):2003-2017

Research into the human dimensions of invasive alien species (IAS) management has received great attention to date. However, little is known about how public education influences stakeholders knowledge and management of IAS. Using key informant interviews and household questionnaires, we explored the role of public education in farmers knowledge and management of invasive Mikania micrantha in the China-Myanmar Border Region (China). We found ten common educational approaches that farmers were familiar with and/or adopted, and a high level of knowledge and management among farmers. We also found that public educational approaches helped to improve farmers knowledge and management, with some differences due to socio-demographic factors. We conclude that promotional materials and training workshops work better than personal experience, and that training workshops perform best. These results suggest that improving the design and implementation of public education could contribute to effective communication among stakeholders and long-term management of IAS. Our findings provide important insights for adopting public education programs in IAS management.

  相似文献   

8.
ABSTRACT The controversy over the use of null hypothesis statistical testing (NHST) has persisted for decades, yet NHST remains the most widely used statistical approach in wildlife sciences and ecology. A disconnect exists between those opposing NHST and many wildlife scientists and ecologists who conduct and publish research. This disconnect causes confusion and frustration on the part of students. We, as students, offer our perspective on how this issue may be addressed. Our objective is to encourage academic institutions and advisors of undergraduate and graduate students to introduce students to various statistical approaches so we can make well-informed decisions on the appropriate use of statistical tools in wildlife and ecological research projects. We propose an academic course that introduces students to various statistical approaches (e.g., Bayesian, frequentist, Fisherian, information theory) to build a foundation for critical thinking in applying statistics. We encourage academic advisors to become familiar with the statistical approaches available to wildlife scientists and ecologists and thus decrease bias towards one approach. Null hypothesis statistical testing is likely to persist as the most common statistical analysis tool in wildlife science until academic institutions and student advisors change their approach and emphasize a wider range of statistical methods.  相似文献   

9.
D. G. Fish 《CMAJ》1965,92(14):694-697
The current interest in medical education and the proposed expansion of medical education facilities have stimulated the development of a research program by the secretariat of the Association of Canadian Medical Colleges. The projects planned and now in progress include: (1) studies of the cost of medical education in Canadian teaching hospitals and medical schools; (2) a study of the basic medical science departments in Canada with special reference to the occupational careers of scientists who have received M.Sc. and Ph.D. degrees in those departments; (3) establishment of a student registry to facilitate prospective studies of Canadian medical students; (4) a survey of the residents in training in Canadian hospitals to obtain their evaluation of their training experience.  相似文献   

10.
The theory of evolution by natural selection has begun to revolutionize our understanding of perception, cognition, language, social behavior, and cultural practices. Despite the centrality of evolutionary theory to the social sciences, many students, teachers, and even scientists struggle to understand how natural selection works. Our goal is to provide a field guide for social scientists on teaching evolution, based on research in cognitive psychology, developmental psychology, and education. We synthesize what is known about the psychological obstacles to understanding evolution, methods for assessing evolution understanding, and pedagogical strategies for improving evolution understanding. We review what is known about teaching evolution about nonhuman species and then explore implications of these findings for the teaching of evolution about humans. By leveraging our knowledge of how to teach evolution in general, we hope to motivate and equip social scientists to begin teaching evolution in the context of their own field.  相似文献   

11.
Training in molecular cytopathology testing is essential in developing and maintaining skills in modern molecular technologies as they are introduced to a universal health care system such as extant in the UK and elsewhere. We review the system in place in Northern Ireland (NI) for molecular testing of solid tumours, as an example to train staff of all grades, including pathologists, clinical scientists, biomedical scientists and equivalent technical grades. We describe training of pathologists as part of the NI Deanery medical curriculum, the NI training programme for scientists and laboratory rotation for Biomedical Scientists. Collectively, the aims of our training are two‐fold: to provide a means by which individuals may extend their experience and skills; and to provide and maintain a skilled workforce for service delivery. Through training and competency, we introduce new technologies and tests in response to personalised medicine therapies with a competent workforce. We advocate modifying programmes to suit individual needs for skill development, with formalised courses in pre‐analytical, analytical and postanalytical demands of modern molecular pathology. This is of particular relevance for cytopathology in small samples such those from formalin‐fixed paraffin‐embedded cell blocks. We finally introduce how university courses can augment training and develop a skilled workforce to benefit the delivery of services to our patients.  相似文献   

12.
13.
Dolan EL  Soots BE  Lemaux PG  Rhee SY  Reiser L 《Genetics》2004,166(4):1601-1609
The National Science Foundation's recent mandate that all Principal Investigators address the broader impacts of their research has prompted an unprecedented number of scientists to seek opportunities to participate in precollege education and outreach. To help interested geneticists avoid duplicating efforts and make use of existing resources, we examined several precollege genetics, genomics, and biotechnology education efforts and noted the elements that contributed to their success, indicated by program expansion, participant satisfaction, or participant learning. Identifying a specific audience and their needs and resources, involving K-12 teachers in program development, and evaluating program efforts are integral to program success. We highlighted a few innovative programs to illustrate these findings. Challenges that may compromise further development and dissemination of these programs include absence of reward systems for participation in outreach as well as lack of training for scientists doing outreach. Several programs and institutions are tackling these issues in ways that will help sustain outreach efforts while allowing them to be modified to meet the changing needs of their participants, including scientists, teachers, and students. Most importantly, resources and personnel are available to facilitate greater and deeper involvement of scientists in precollege and public education.  相似文献   

14.
The paper discusses the scope and influence of eugenics in defining the scientific programme of statistics and the impact of the evolution of biology on social scientists. It argues that eugenics was instrumental in providing a bridge between sciences, and therefore created both the impulse and the institutions necessary for the birth of modern statistics in its applications first to biology and then to the social sciences. Looking at the question from the point of view of the history of statistics and the social sciences, and mostly concentrating on evidence from the British debates, the paper discusses how these disciplines became emancipated from eugenics precisely because of the inspiration of biology. It also relates how social scientists were fascinated and perplexed by the innovations taking place in statistical theory and practice.  相似文献   

15.
Fundamental concepts in statistics: elucidation and illustration   总被引:4,自引:0,他引:4  
Fundamentalconcepts in statistics form the cornerstone of scientific inquiry. Ifwe fail to understand fully these fundamental concepts, then thescientific conclusions we reach are more likely to be wrong. This ismore than supposition: for 60 years, statisticians have warned that thescientific literature harbors misunderstandings about basic statisticalconcepts. Original articles published in 1996 by the AmericanPhysiological Society's journals fared no better in their handling ofbasic statistical concepts. In this review, we summarize the two mainscientific uses of statistics: hypothesis testing and estimation. Mostscientists use statistics solely for hypothesis testing; often,however, estimation is more useful. We also illustrate the concepts ofvariability and uncertainty, and we demonstrate the essentialdistinction between statistical significance and scientific importance.An understanding of concepts such as variability, uncertainty, andsignificance is necessary, but it is not sufficient; we show also thatthe numerical results of statistical analyses have limitations.

  相似文献   

16.

Background

Several studies indicate that the statistical education model and level in medical training fails to meet the demands of clinicians, especially when they want to understand published clinical research. We investigated how study designs and statistical methods in clinical studies have changed in the last twenty years, and we identified the current trends in study designs and statistical methods in clinical studies.

Methods

We reviewed 838 eligible clinical study articles that were published in 1990, 2000, and 2010 in four journals New England Journal of Medicine, Lancet, Journal of the American Medical Association and Nature Medicine. The study types, study designs, sample designs, data quality controls, statistical methods and statistical software were examined.

Results

Substantial changes occurred in the past twenty years. The majority of the studies focused on drug trials (61.6%, n = 516). In 1990, 2000, and 2010, there was an incremental increase in RCT studies (74.4%, 82.8%, and 84.0%, respectively, p = 0.013). Over time, there was increased attention on the details of selecting a sample and controlling bias, and there was a higher frequency of utilizing complex statistical methods. In 2010, the most common statistical methods were confidence interval for superiority and non-inferiority comparison (41.6%), survival analysis (28.5%), correction analysis for covariates (18.8%) and Logistic regression (15.3%).

Conclusions

These findings indicate that statistical measures in clinical studies are continuously developing and that the credibility of clinical study results is increasing. These findings provide information for future changes in statistical training in medical education.  相似文献   

17.

Background

Although recent studies report on the benefits of blended learning in improving medical student education, there is still no empirical evidence on the relative effectiveness of blended over traditional learning approaches in medical statistics. We implemented blended along with on-site (i.e. face-to-face) learning to further assess the potential value of web-based learning in medical statistics.

Methods

This was a prospective study conducted with third year medical undergraduate students attending the Faculty of Medicine, University of Belgrade, who passed (440 of 545) the final exam of the obligatory introductory statistics course during 2013–14. Student statistics achievements were stratified based on the two methods of education delivery: blended learning and on-site learning. Blended learning included a combination of face-to-face and distance learning methodologies integrated into a single course.

Results

Mean exam scores for the blended learning student group were higher than for the on-site student group for both final statistics score (89.36±6.60 vs. 86.06±8.48; p = 0.001) and knowledge test score (7.88±1.30 vs. 7.51±1.36; p = 0.023) with a medium effect size. There were no differences in sex or study duration between the groups. Current grade point average (GPA) was higher in the blended group. In a multivariable regression model, current GPA and knowledge test scores were associated with the final statistics score after adjusting for study duration and learning modality (p<0.001).

Conclusion

This study provides empirical evidence to support educator decisions to implement different learning environments for teaching medical statistics to undergraduate medical students. Blended and on-site training formats led to similar knowledge acquisition; however, students with higher GPA preferred the technology assisted learning format. Implementation of blended learning approaches can be considered an attractive, cost-effective, and efficient alternative to traditional classroom training in medical statistics.  相似文献   

18.
As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880’s, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930’s–1970’s) because the German scientists fled Hitler’s government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980’s. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain, Singapore, Taiwan and Israel are such examples of this government support for biotechnology in the 21st century. Will the US continue to maintain its domination of biotechnology in this century? Will the US education system adjust to the new dynamic of synergistic relationships between the education system, industry and government? This article will try to address these questions but also will help the reader understand who will emerge by 2015 as the leader in science and education.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号